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Characterization of Coherent Structures in Tokamak Edge Turbulence

S. Benkadda, ' T. Dudok de Wit, A. Verga, ' A. Sen, ASDEX team, and X. Garbet
'Turbulence Plasma, URA 773 Centre National de la Recherche Scientifique Un-iversite de Provence,

Institut Mediterraneen de Technologie, F-13451 Marseille Cedex 20, France

Cadarache, F-13108Saint-Paul-lez-Durance Cedex, France
'Institute for Plasma Research, Bhat, Gandhinagar 382424, India

4Max Pla-nck Inst-itut fii r Plasmaphysik, D 8574-8 Garching, Germany
(Received 14 June 1994)

A statistical test for extracting and identifying coherent structures in the scrape-off layer turbulence
is used to analyze Langmuir probe data from the ADITYA and ASDEX tokamaks. This method,
the biorthogonal decomposition, allows one to characterize large-scale coherent structures in plasma
turbulence in an unambiguous manner. It is shown that such structures effectively contribute to radial
transport and to intermittency. Results from numerical simulations of turbulence driven by the resistive
interchange instability in the scrape-off layer are compared to the observed statistical properties.
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The role played by localized and long-lived structures
in plasma turbulence has become an important research
issue in the last decades. Both experimental results [1,2]
and numerical simulations [3] support the idea of self-
organized turbulence in the scrape-off layer (SOL) of
tokamak plasmas. The identification of such coherent
structures from spatio-temporal turbulence measurements
is fundamental for understanding their dynamics and test-
ing their contribution to radial transport. Their extraction,
however, has been a challenge problem so far, due to the
lack of adequate analysis techniques [4]. It is thus impor-
tant to provide appropriate statistical tools for extracting
the relevant information from experimental data. and to
give an accurate description of turbulence in a relatively
low-dimensional space. In this Letter we report a simul-
taneous analysis of the space and time dependences of
fluctuation data, using a multivariate technique called the
biorthogonal decomposition (BD).

The analysis of edge plasma turbulence has tradition-
ally been based on correlation and spectral techniques [5].
Recently, other techniques such as conditional sampling
[6] and bispectral analysis [7] have been used to search
for self-organized behavior. Although these methods can
be extremely powerful, they do not readily provide a sta-
tistical test capable of identifying and extracting coherent
structures; they either suffer from an arbitrariness in the
definition of coherent structures or lack in adequate spa-
tial or temporal resolution. As a result, the experimental
evidence for the existence of such structures has remained
inconclusive so far. Another shortcoming of these meth-
ods is their inability to properly deal with spatio-temporal
signals. Indeed, most of them merely proceed with one-
dimensional projections of the data and no full spatio-
temporal analysis has been reported.

The BD provides an objective test for identifying
and extracting coherent structures without an a priori
specification of their shape or localization. This statistical

method has the interesting property to concentrate most of
the pertinent dynamics into a few components, thereby
allowing a strong reduction in the number of degrees of
freedom necessary to describe the data. Its ability to
reveal coherent structures will be used to assess the effect
of the latter on radial transport and intermittency. The
experimental data analyzed in this letter originate from
the SOL of ADITYA [8] and ASDEX [9] tokamaks and
the simulations data from a model of SOL turbulence
driven by the resistive interchange instability [10].

The BD belongs to a class of methods (proper orthogo-
nal decomposition, Karhunen-Loeve expansion, and singu-
lar value decomposition) that were originally introduced
by Lumley in fluid turbulence [11] and has since been
used in fiuid mechanics [12] and in magnetohydrodynam-
ics (MHD) activity studies [13]. To illustrate the method,
we consider a scalar spatio-temporal signal y(x, t) (e.g.,
ion saturation current or floating potential) whose tempo-
ral evolution is measured simultaneously at M different
locations. The signal is subsequently sampled and the
data are assembled into an N X M matrix Y, in which
the columns are time series. The BD consists in expand-
ing the discrete data Y;i = y(xj, t;) into a unique set of
modes that are orthonormal in time and in space, i.e.,
Y;, = g„,A„v„(t;)u„(x,), where K = min(N, M) is the fi-
nite global dimension of the data set. The base functions
u„(x,) and v„(t;)are, respectively, eigensolutions of the
two point temporal and spatial cross-correlation matrices
of Y. The weights A„areeither positive or equal to zero,
and it is conventional to sort the series in decreasing weight
order.

The BD, like other proper orthogonal decomposition
methods, is based on a diagonalization of the data cross-
correlation matrices. Note that we have a one-to-one
correspondence between the spatial and temporal modes,
Yu„=A„v„,which corresponds to a dispersion relation.
A physical interpretation which stems from these defini-
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tions is that the BD projects the data on an orthonormal
basis which separates the temporal and the spatial dy-
namics. Coherent structures that are highly correlated in
time or in space appear in heavily weighted components
(A„ is large). Traveling waves appear in pairs of com-
ponents that have equal weights. The more redundant
the data set is, the steeper the weight distribution is; to-
tally uncorrelated signals such as random noise will give
A) = A2 = -- = AI(,-.

In the present Letter we apply the BD to spatio-
temporal Langmuir probe data and to 2D simulation data
of SOL turbulence. The experimental density fluctuations
n are inferred from the ion saturation current and the
potential fluctuations P from the floating potential (ne-
glecting temperature fluctuations). The ASDEX data are
obtained from a poloidal array of 16 probes separated
(in the poloidal direction) by 2 mm and located 1.5 cm
outside the last closed flux surface. In ADITYA (major
radius R = 75 cm, minor radius a = 25 cm), the fluctua-
tions are measured by a poloidally oriented rake of ten
probes that are 3 mm apart and located 5 mm outside the
last closed flux surface. In both experiments, the data
have been recorded at a sampling rate of 1 Mhz in Ohmic
discharges; the record lengths are, respectively, 20 and
2.05 ms. The simulated density and potential fluctuations
used in the letter result from a code describing SQL turbu-

lence driven by the resistive interchange instability [10].
This code uses a pseudospectral method with dealiasing
on a 2D grid with a predictor corrector algorithm. Its in-

tegration domain is a 256 X 256 grid of dimensions 128p,
in both the poloidal and vertical radial directions where p,
is the hybrid Larmor radius.

Figure 1 shows the time evolution of potential den-

sity fluctuations measured, respectively, in ADITYA and

ASDEX, as well as an intensity plot of the simulated

density fluctuations at a given time. In all the figures,
large (i.e., comparable in size to the thickness of the

SOL) and long-lived structures are readily apparent. In

ASDEX, these structures have been reported as "fluctua-

tion events" [9]. In ADITYA, the non-Gaussian proba-
bility distribution function (PDF) associated with the
broadband fluctuations has been interpreted as a signa-
ture of intermittency [8]. In both experiments, we find

that the structures propagate poloidally in the direction
of the ion diamagnetic drift. Finally, in the simulation

data, large scale coherent structures have been observed
even in the saturated regime of turbulence [10].

The frequency and wave number power spectra of
these signals are rather featureless and no predominant
periodic structure can be identified. The bicoherence
level tends to be small ((2%) but statistically stable,
indicating that local quadratic wave couplings are weak.
The basic statistical properties of the fluctuations, such
as their average lifetime or poloidal extension are as
usual inferred from the decay of their cross correlations.
Typical correlation times are, respectively, 20, 35, and

ADITYA: lon saturation current ASDEX: Roating potential
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50 p, s for the ADITYA, ASDEX, and simulation data.
Similarly, the average poloidal correlation lengths are,
respectively, 3, 2, and 3 cm. Note that these results could
be related either to the most unstable mode or to the
existence of coherent structures and provide no means for
extracting or identifying such structures.

However, the application of the BD to these data leads
to the weight distributions that are shown in Fig. 2. The
steepness of these distributions is an indication of redun-

dancy in the data sets and means that the salient features
are captured by just a few modes. Figure 3 shows the four
dominant modes of the ASDEX data, which, together,
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FIG. 2. Distribution of the biorthogonal weights A„associated
with the ADITYA and ASDEX data (left) and the simulation
data (right). For the latter only 120 out of the 256 compo-
nents are shown. The distributions have been normalized for
convenience to the value of Al. The absolute slopes of the dis-
tributions depend on the probes spacing and the sampling time,
and therefore cannot be meaningfully compared.

53 1'i.'6 15) 856 250
polokIal direction

FIG. 1. Time evolution of the ion saturation current measured
on ADITYA, the floating potential measured on ASDEX, and
2D intensity plot of the simulated density fluctuations in the
poloidal and radial directions (snapshot taken in the saturation
regime). The arrows on the figures indicate typical large
structures.
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FIG. 3. The four dominant biorthogonal modes of the
ASDEX Boating potential data. For each mode number,
an excerpt of the temporal component (left) and the spatial
component (right) are shown.

represent over 94% of the signal variance. A Fourier
analysis of the biorthogonal components reveals that the
dominant ones also contain the largest scale lengths and
longest time scales (Fig. 4). Thus, a significant fraction
of the observed fluctuations can be represented in terms
of a few modes that are highly correlated in time and in
space. This result, and the steepness of the weight distri-
bution, are together a clear signature of the existence of
coherent structures.

We must stress at this point that the BD is not
equivalent to a 2D Fourier analysis even though the
spatial components in Fig. 3 may suggest a close link.

In a Fourier analysis, the base functions are prespecified,
whereas the biorthogonal components are calculated from
the data. In contrast to Fourier modes, the average wave
number or frequency of the biorthogonal components does
not increase fully linearly with the mode number (Fig. 4).
It is precisely this data-adaptive property that allows the
BD to identify and isolate in an optimal way the part of
the signal that is correlated in time and in space.

The ability of the method to separate different scales
(instead of just wavelengths or frequencies) is illustrated
in Fig. 5, which shows the ASDEX and simulation
data after subtraction of 3 and 10, respectively, of the
dominant components. Crude estimates of the numbers
of significant components are obtained here from the
number of terms needed to explain at least 90% of the
variance of the data. A comparison between Figs. 1 and
4 clearly shows that the dominant components capture the
large structures and that the subsequent ones represent
smaller fluctuating events which end up being randomly
distributed.

A direct consequence of these results is that we may use
the BD to determine which scales display the strongest
intermittency. Since intermittent behavior has been re-
ported for the turbulence observed in SOL of ADITYA
[8], we have calculated the PDFs associated with the
temporal biorthogonal components of the ADITYA data.
The strongest deviation from a Gaussian distribution
is observed in the dominant components, thus indicat-
ing that large scale structures effectively contribute to
intermittency.

Finally, we discuss the contribution of coherent
structures to radial particle transport. To this end, the
ensemble-averaged particle flux I' = (nG„)is determined,
where 6„is the radial component of the convection
velocity v = Ka x B/82, Es the poloidal component of
the fluctuating electric field, and B the magnetic field.
We then define the partial fluxes associated with the bior-
thogonal components of the density fluctuations as
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FIG. 4. Average poloidal wave numbers (crosses) aud average
frequencies (circles) associated with the biorthogonal compo-
nents of the ASDEX data (left) aud average poloidal wave num-
bers relative to the simulation data (right). The wave numbers
(resp. frequencies) are normalized with respect to their Nyquist
limit and error bars represent an uncertainty of ~ one standard
deviation. The dominant modes (i.e., the low order ones) also
represent the largest and longest-lived structures.
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FIG. 5. Reconstruction of the ASDEX and simulation data
sets of Fig. 1 after subtraction of their dominant biorthogonal
components. Three components have been subtracted from the
ASDEX data, ten from the simulation data. Intensity levels
(vertical scale) are the same as those used in Fig. 1. Note
that the structure marked by an arrow in Fig. 1 has completely
disappeared for the ASDEX floating potential signal.
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FIG. 6. The partial fluxes F„associated with the biorthogonal
components of the simulated density fluctuations (left) and
cross phase of density and potential fluctuations (right). Note
that each partial flux has been normalized by the corresponding
weight A„ofthe density. Large fluxes are associated with large
coherent structures (n = 1, . . . , 20). The cross phase is 90 at
high correlation level.

I'„=(n„6„).The partial fluxes associated with the sim-

ulation data are displayed in Fig. 6, which reveals their

strong concentration in the dominant components. This
result also pertains to the experimental data, for the cases
where the flux can be inferred from simultaneous ion
saturation current and floating potential measurements.
A first conclusion is that coherent vortex structures play
a dominant role in controlling radial transport. We now

turn to the phase relationship between the simulated n

and P, which is given by the argument of the cross-power
spectrum of these quantities. The phase angle is found

to be close to 90 at large correlation levels, see Fig. 6.
We conclude from Fig. 6 that the radial particle transport
in the SOL is mainly due to the large scale structures

and to their ability to convect the small structures that

are essentially concentrated in the steep gradients around

the large vortices. Note that a Fourier analysis of the

flux provides no means for determining which scales
contribute to radial transport because, in contrast with the

BD, the power spectrum of the flux does not reveal the

dynamical structure of the turbulence. These results are

in excellent agreement with experimental observations
made on the CCT [2] and ASDEX [9] tokamaks.

In conclusion, the application of the biorthogonal

decomposition to Langmuir probe and simulation data,

has allowed us to identify, in an unambiguous manner,

coherent structures in the SOL of tokamak plasmas. The
same conclusions have been reached, using H emission

data (noninvasive detection technique) from ASDEX.
Different spatial or temporal scales (and not frequencies
or wavelengths) have been isolated and identified by
the BD, which provides an objective statistical test for
detecting coherent structures [14]. Using this method,

it has been shown that large scale coherent structures

effectively contribute to radial particle transport and

furthermore explain most of the intermittent behavior
observed in the ADITYA tokamak.

These results also reveal a universal behavior in the
SOL turbulence of tokamaks, which is characterized by
the importance of large scale structures (validation of
flute-type models) and the similarity of the properties of
these structures, as they are observed on various devices.
Finally, we want to stress that the BD is equally appro-
priate for analyzing 3D turbulence as well. Experiments
and numerical simulations are presently being performed
to extend this analysis to edge fluctuations (inside the last
closed magnetic surface).
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