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Iterated Instabilities during Droplet Fission
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Recent observations indicate that the shape of a fluid interface undergoes repeated instabilities
arbitrarily close to breakoff. We interpret this behavior as the result of successive instabilities of the
similarity solution of Eggers [Phys. Rev. Lett. 71, 3458 (1993)]. We show that the similarity solution
is uns'table to finite amplitude perturbations, with critical amplitude going to zero at the singularity.
Thermal fluctuations in the fluid can trigger the instabilities.

PACS numbers: 47.15.Hg, 03.40.Gc, 68.10.—m

The scientific study of droplet breakup has a dis-
tinguished history, beginning with the work of Lord
Rayleigh in the late nineteenth century [1]. Recently
there has been a rebirth of interest, largely motivated by
questions about the singularity mechanism [2]. It was
proposed that the interfacial shape near breakoff is self-
similar [3—8] and is essentially independent of experi-
mental details. The physical reason for this is that near
breakoff the droplet radius becomes much smaller than
any other length scale (given by initial conditions or ex-
ternal forcing), so that the shape of the interface becomes
independent of these scales. Self-similarity has been ob-
served in models for droplet breakup in a Hele-Shaw cell
[4—6] and the rupture of soap films [7].

For three-dimensional fluid breakup, Eggers and
Dupont [8,9] found a similarity solution describing both
the thickness h(z —zo) and the velocity v(z —zo) of an
axisymmetric fluid interface near a breakoff at vertical
coordinate Qp. The solution has the form

t'z —zo &

hF. (z, t) = Z„t'H

v~(z, t) = t' 'I'U—(z —zan
tll/2 )
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Here, E'„(—= riz/yp) is the viscous length scale, t~
(= rI3/y2p) is the viscous time scale, and rl, p, and y
are, respectively, the fluid viscosity, density, and surface
tension. t' —= t* —t/t„ is the dimensionless time to
breakoff. H and U contain no free parameters. The
minimum thickness of the interface h;„follows the
universal law h;n = 0.034„t'.

However, in a set of experiments and computer simu-
lations [10], we showed that the singularity of viscous
droplets falling from a faucet differs from the above scal-
ing. Examples of interfacial shapes observed experimen-
tally are shown in Fig. 1. Figure 1(a) shows a drop of
an 85% glycerol in water mixture. Figure 1(b) shows a
close-up near the breaking point, in which long necks
are attached to thinner necks; at slightly higher viscos-

ity [Fig. 1(c)] regions of varicosity (called "blobs") ap-
pear. Numerical simulations of hydrodynamic equations
with a weak noise source reproduce these features of the
experiments and also show that necks and blobs form re-
peatedly (on smaller and smaller scales) as the interface
breaks [10]. These instability cascades are only observed
for fluids with viscosity greater than about 1 P [11].

The purpose of this Letter is to present the instability
mechanism and to compute the amount of noise necessary
to produce necks and blobs. Our argument stems from the
numerical observation (Fig. 2) that, immediately before
a new neck forms, the thinnest section of the interface
is well approximated by the similarity solution. The
nonsteady singularity results from repeated instabilities of
the similarity solution.

A static cylindrical interface [1] is unstable to modu-
lations with wavelength larger than its circumference.
Although near breakup the interface is neither cylin-
drical or static (e.g., the fluid velocity diverges), remnants
of this Rayleigh instability still exist: On scales much
smaller than the characteristic scale of the similarity solu-
tion Z„t"I2,the interface is approximately a cylinder with
circumference of order C„t'. Perturbations with wave-
length A. satisfying C„t'« A « Z„t"~ obey Rayleigh's
stability criterion and will grow. Remarkably, the time
scale for a Rayleigh instability on a cylinder of thickness
h;„[12]is 6h;„t„/4„=t" —t/6, so that appreciable
growth can occur in the short time before breakoff.

These modes are convected and stretched as they grow;
a generic perturbation moves away from the singular-
ity, diminishing its effect. However, if a perturbation
originates at a stagnation point, it remains near the sin-
gularity and can change the breakoff [13]. Below, we
show that perturbations of the interface with amplitude
larger than A, = 10 - t". h;„,a time distance t' from the
singularity, produce observable changes in the breakoff.
This critical amplitude goes to zero at the singularity, so
that even thermal fluctuations provoke instabilities. We
find a viscosity dependence which is consistent with the
experiments.
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FIG. 1. (a) A drop of an 85% glycerol water mixture (rt = 1 P) falling from a 2 cm diameter nozzle [10]. (b) A close-up near
breakoff where long necks are attached to thinner necks. (c) Blobs develop near the breaking point for a slightly higher viscosity
fluid (87% mixture rt = 1.4 P).

Our analysis uses the slender body equations [9,14] for
the interfacial thickness h(z, t) and the fluid velocity v(z, t),
nondimensionalized using Z„and t„:

a, h = —(h2v), , (3)

Bv +vv = —(h v) —8 ——h . (4)t z h2 z z z(h zz)

These equations were derived from the Navier-Stokes
equations for long-wavelength, axisymmetric distur-
bances.

We first find the local growth rate for perturbations
on the similarity solution whose wavelength A satisfies
f„t'« A « Z„t"~2. Stability analysis is carried out in

the rescaled frame of the similarity solution by taking h =
hF. + C„t'g(g,t') and v = vs + ,

"t' '~2w(g—, t'), where

g: z /zoZ&t" tz and where g and w are small pertur-
bations of the similarity solution. To linear order,
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where r —= —ln(t').
The local growth rate is computed by taking both g

and w to be proportional to es, where S(x, g, r, e) =
p(f, e)r + ik(r)x with x =—g/e and e « 1. Plugging
this ansatz into Eqs. (5) and (6) and solving for S system-
atically in powers of e gives to leading order [15]

Im(P) = — U + —k (7)
2

0
—10 -8

similarity solution
neck shape

Equation (9) for k(r) eliminates secular terms and has
the simple physical interpretation that the wave number
of a perturbation is stretched by the interfacial velocity
U; = —akim(p) = U + g/2 as it moves.

The local growth rate implies that if A(go) is the ampli-

tude of a perturbation at go, then approximating —„,ln(A) =
U; dt ln(A) = Re(P) [16]gives

FIG. 2. Comparison between the shape of the third neck in
the simulation of [10] and the similarity solution [8].
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where g(r) solves g, = U;. Maximal growth occurs
for perturbations originating near the point f*, where

U; = U(g*) + g'/2 = 0. Perturbations starting near g*

move slowly and thus have more time to grow. Remark-
ably, H(g*) differs by only a fraction of a percent from
the absolute minimum of H, so the local growth rate near

P is nearly the maximal growth rate.
A perturbation originating near g* undergoes rapid

growth and stretching, continuing until it reaches
= —10 (if it starts on the left of g*) or f+ = —0.5 (if

it starts on the right). Beyond these points there is not
appreciable growth in the laboratory frame. Analysis of
the local growth rate shows that perturbations originating
for g ) g* are damped [17]. Depending on their initial
amplitude, perturbations starting with g & f* become
either (1) a blob, which distorts the shape of the interface,
or (2) a neck, which also changes the spatial and temporal
location of the singularity. In either case, numerical
simulations indicate that the shape of the interface relaxes
to a similarity solution. Instabilities in the similarity
solution can be generated indefinitely, leading to the rough
singularity of [10].

The largest growth occurs when a perturbation with
wavelength of order h;„(t"~2 in rescaled units) originates
at p. Using (10) we find that A(f )/A(gp) r' r where

p depends on local derivatives of the similarity solution
evaluated at g". In order for A(f ) —0.03 (the minimum
neck thickness), A(gp) must be larger than the critical
amplitude

A, = 0.03nt'~,

where the constants p = 1.49 and u = 10 47 are deter-
mined using the numerical values of the similarity solution
[8]. Note that (11) is written in rescaled units.

We have compared numerical solutions of the linearized
Eqs. (5) and (6) to Eq. (10), with excellent agreement
[17]. Moreover, simulations of Eqs. (3) and (4) verify
our basic predictions. Figure 3(a) shows a simulation
(initially t' = 10 4) in which a perturbation with size
10 '3 (= 10 sh;„)and wavelength of order h;„was
placed on the interface very close to P. The perturbation
grows very rapidly and changes both the spatial and
temporal locations of the singularity, forming a "neck."
The solution near the new breaking point approaches
a similarity solution. Figure 3(b) shows a simulation
(initially t' = 0.3) in which a much larger bump (size
10 'p = 10 5h;„)with wavelength of order h;„begins
farther from f* Here, the. growth is not sufficient to
change the location of the rupture, but does form a blob.
By repeating such simulations for perturbations of different
amplitudes, we estimate numerically the critical amplitude
A, . For t' = 0.3, 0.03, and 10, the numerical upper
bounds for the critical amplitudes are 10 -, 10 .

, and
10 'p, respectively, in agreement with (11).

Since the analysis is nondirnensional, instabilities occur
independently of fluid parameters (as long as sufficient
noise is present). However, the scale at which instabilities
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FIG. 3. (a) The solid line is the first time, where a bump of
size 10 ' is placed at the stagnation point of the similarity
solution. The dotted, dashed, and dot-dashed lines represent
three subsequent times. (b) A bump of size 10 '0 is placed on
the similarity solution farther from the stagnation point.

set in depends on the fluid, because the interface must be
approximated by the similarity solution, requiring t « l.
Thus when studying the interfacial shape at a fixed radius,
instabilities occur when 4„is much larger than the radius.
This agrees with the experimental viscosity dependence
[10]. The characteristic size of the structures forming at
a given time before breakoff is given by the characteristic
length scale of the similarity solution, also in agreement
with our observations.

Without an external noise source, simulations do not
show repeated instabilities. However, given that Eqs. (3)
and (4) only approximate the full Navier-Stokes equations,
external noise may be unnecessary. For experiments, this
is irrelevant, because there are many unavoidable types of
external noise. The most ubiquitous are thermal fluctua-
tions, which produce, for example, capillary waves on the
interface. These fluctuations have a significant effect when
their amplitude exceeds the threshold amplitude given
by Eq. (11). The result shows [17] that thermal capil-
lary waves produce instabilities whenever the droplet ra-
dius goes below the threshold

( )2/5

hthres ~p,
(.4) (12)

where ZT = Qk&T/y. Using the parameters appropriate
for the experiments shown in Fig. 1 gives h,h, —1 p, m
[18]. This seems too small to explain Fig. 1;other sources
of noise must affect the experiments.

Finally, the effects of noise are not relegated to the
vicinity of the singularity but can affect the gross shape as
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FIG. 4. A drop of 92% glycerol water mixture (rt = 2.8 P)
falling from a 2 mm diameter nozzle. Both the positions and
the number of blobs vary between the two photographs.

well. In Fig. 4 we show pictures of the shape of a higher
viscosity drop, demonstrating that both the number and

location of the blobs vary when the experiment is repeated.
A theoretical understanding of the noise sensitivity at such
an early stage is currently lacking.

In conclusion, we have presented the mechanism for
the instability cascades observed in experiments and simu-

lations [10]. Even though velocity gradients diverge at
breakoff, there is still sufficient time for instabilities to
develop and change the location of the breaking point.
Thermal Iluctuations, whose relative size goes to zero at
breakoff, can trigger instabilities. Since the theory only de-
pends on Eggers' [8] universal similarity solution and the
presence of thermal noise, instabilities will form during the
breakup of any three-dimensional viscous Quid in vacuum,
in any experimental situation. Many issues are left open:
for example, what are the implications of the repeated
instabilities for the satellite drop distribution after breakup?
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