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Experimental Observation of Berry's Phase of the Lorentz Group
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Berry's phase of the Lorentz group has been measured in a system of connected nonlinear electronic
oscillators. Each oscillator was driven so that it was in the vicinity of a period-doubling bifurcation
where the response to a small perturbation transforms similarly to a Lorentz boost of a spinor. By
connecting the output of one oscillator to the input of the next, it was possible to make a closed loop on
a hyperboloid (the invariant surface of the Lorentz group), the enclosed area of which is Berry's phase.
Good agreement between theory and experiment is found.
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In recent years there has been considerable interest [1—
4] in the so-called geometric phases, in both classical
and quantum mechanics. A geometric phase is time
independent but path dependent; i.e., it is a consequence
of the geometry of the trajectory, but not a function of
the dynamics of the motion. These phases approach a
finite nonzero limit as the system is taken infinitely slowly
around a closed path. The concept has had wide-ranging
implications. It has been applied in fields as diverse as
hydrodynamics [5],optics [6],nuclear magnetic resonance
[7—9], the quantized Hall effect [10], and quantum field
theory [11]. It is a simple, subtle, and mathematically
beautiful concept.

In this work, we have measured the geometric phase
in a system of connected dissipative driven nonlinear
electronic oscillators in the vicinity of a period-doubling
bifurcation. Surprisingly, it turns out that under such
conditions a small signal is transformed as a Lorentz
transformation of a spinor, except for some factors [12].
By connecting the output of one oscillator to the input
of the next, it is possible to make what corresponds to
a closed loop on a hyperboloid (the invariant surface of
the Lorentz group), and thereby measure Berry's phase
of the Lorentz group (LG). The theory was originally
formulated at the transition between a dissipative system
and a Hamiltonian system [12,13]. However, such a limit
is difficult to obtain in an experimental situation, and it
has therefore been necessary to include the effects of
dissipation. Unexpectedly, such a correction does not
destroy the above transformation properties, but merely
gives some additional amplitude dependent phase factors
that can be removed by a renormalization. Usually
when speaking of the LG one thinks of the special
theory of relativity, but the LG is a mathematical group
and one should not be surprised to find it in other
contexts. Chiao and Jordan [14,15] first suggested an
experiment to measure Berry's phase of the LG using
squeezed light. The connection between squeezed light,
the aforementioned oscillators, and the LG lies in the
transformation properties of such systems in the vicinity

of an instability [12]. In the present study, the dissipative
nature of the system is of the utmost importance and is
responsible for the stability of the transformation.

A dissipative driven nonlinear oscillator can be de-
scribed by a second-order differential equation of the form

q + aq + V'(q) = Aocos(2tottt + P)
+As cso( tottt+ 0),

where q is some generalized coordinate and a is the
damping parameter. V(q) is a nonlinear potential with
V"(0) = coo. This means that the system has a small
amplitude resonant frequency given by cog = too tl' /2.
The important nonlinear part of the potential is given
by the third-order derivative V'"(0) = y. [Higher-order
terms are unimportant since the bifurcation point and
therefore the unperturbed (As = 0) limit cycle qu(t) tend
to zero as n ~ 0, which is the case studied here.
See Ref. [13] for details. ] The first term on the right-
hand side of Eq. (1) is the drive with amplitude Ao,
frequency 2toR, and phase P. The second term is a
small perturbation with amplitude As, frequency coR, and
phase 8. It is the system's response to this perturbation
which will be studied. The basic assumption is that as
the amplitude AD of the drive is increased, the system
will eventually undergo a period-doubling bifurcation at a
critical amplitude Ac. Since it is not possible to do the
experiment in the scaling limit a 0, the theory [12]has
been extended to include the lowest-order correction term
in a perturbation expansion in the damping parameter a.

Linearizing Eq. (1) around the limit cycle qu(t), we find
the solution

As
$(t) = [sin(catgut + B) + u sin(tottt + 2P —8)

Cl CdR

(2)

where g(t) = q(t) —qo(t) is the deviation from the
limit cycle qu(t) = ( AD3/to)—ttcos(2to&t + P), and
u = AD/Ac where Ac = 6a (V0) /3lVz"'( ) 0Transform. -

ing to a rotating frame of reference (rotating with the
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signal frequency coR), the response can be written as a
linear transformation of a spinor, namely,

I I

= a(u)A(u, g)R(~)I '
I, (3)2) 2

where a(u) = ap/(1 —u )'~ with ap = As/ace&,
—o.

p
—uo;cos(P + 8) —uo., sin(@ + 8)

(1 —u )'/

(4)

where 8 = tan '[Q/(1 —u2)] and Q = 4'~/a, and the
pure rotations are R(b) = o.p cos 8 +

iver~

sin 8 where

(op, o, o.Y, o.,) are the Pauli matrices given by

1 01 0 11
0 1

~"=
1 0~)

~0 -i~ f 1 0
(i 0) ' (0 -I) '

That this is indeed similar to a Lorentz transformation of
a spinor (except for some factors) can be seen with the
parametrization

cosh (4/2) = 1/Ql —u2, sinh (4/2) = u/Ql —u2,

so that A(u, P) becomes

( ~ ~ @l
A(e) = exp~—

2 )
(6)

where cr = (o„,o~, o.,).and 4 = 4&(cos($ + B),0, sin(P +
5)), and 4 is obtained from Eq. (5). Thus, Eq. (6) is
similar to a Lorentz transformation of a spinor where the
direction of the boost is determined by the phase of the
driving field and the dissipation in the system [16].

The aim of this work is to measure Berry's phase of
the LG. In order to do this a number of successive trans-
formations have to be combined in such a way that they
make a closed loop on a hyperboloid (the invariant surface
of the LG). For example, four successive transformations
of the form Eq. (4) can be combined to yield [ignoring for
the moment the other factors in Eq. (3)]

L(u, P + 8) = A(u, m. /4)A(u, P + 8)

XA(u, 2n. —P —B)A(u, —m/4). (7)

Notice that the normalized amplitude u is the same for all
four "boosts" as is the Q factor. This ensures that 8 is
the same for all the boost directions and can therefore be
ignored. The above transformation makes a closed loop
on the hyperboloid (see Fig. 1) if the following constraint
is fulfilled:

g(P) = 1 —icos @

+ u [v 2cos P + cos 2P + sin 2P] = 0. (8)

In the following, we will use the branch of the solution
which runs continuously from @ = 3n. /4 for u = 0 to

P = n. /2 for u = 1. Notice for u = 0 the sum of the

FIG. 1. View of the closed path on the hyperboloid with the
projection into the parameter space. The coordinate system
corresponds to Eq. (4). Each vector corresponds to a Lorentz
boost, with a total of four to complete the closed loop. The
inset shows the difference between using four successive boosts
(dashed vectors) as in Eq. (7), and a pair of two successive
boosts (solid vectors) in opposite directions as in Eqs. (12) to
close a loop. The enclosed area is Berry's phase 8~.

angles is equal to 2m, whereas for u = 1 the sum is close
to Sn./2. The latter is a consequence of the non-Euclidean
geometry.

The initial state is given by g = R(8) (1,0) where R(8)
rotates a spinor through an angle 8. As a result of the
transformation Eq. (7) and the constraint Eq. (g), the final

state becomes

$f L(u, P)g = R(8s)R(8)(1,0) = R(8s)g, (9)

where the rotation R(8s) is a result of the closed loop, and

8s(u) is Berry s phase with the geometric origin given by

8s(u) = dA,
A(u)

where the integral is over the area (Lorentz metric) on
the hyperboloid enclosed by the loop. The angle 8&(u)
is more easily calculated using the Pauli spin matrix

representation of the LG.
Now to the particular form of the transformation used

in the experiment. The transformation L(u, P) involves

four operations and therefore four systems. It is desirable
to use only two systems at one time. From Eq. (9), we
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have for a closed path that L(u, P) = R(8s), which, using
Eq. (7), can be rearranged into

A(u, $)A(u, m /4) = A(u, m —$)A(u, 3n /4) R(8g) .

Thus, we can consider the closed loop formed by the two
transformation s,

&fa ~ ~a
T - FILTER BAI4)PASS
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A(u, $)A(u, n. /4) = A(u', P*)R( 8&/—2), (12a)

A(u, m —@)A(u, 3n /4) = A(u*, P*)R(8'/2) . (12b)

The parameters u* and P* are defined through the above
relations. The idea is to make two measurements with
two systems in what corresponds to an interference
experiment, along the lines suggested by Chiao and
Jordan [14]. Thus, instead of having four individual paths
traversing a closed loop in one direction (the dashed
vectors in the inset to Fig. 1), the same loop is traversed in
two directions (the solid vectors). If now the full form of
the transformation used in the experiment is considered,
the additional factors from Eq. (3) have to be included,
yielding

L~(u, P) = a (u)A(u, @)R(B)R(8,)A(u, m. /4)R(8), (13a)

L2(u, P) = a (u)A(u, m. —$)R(8)R(B,)A(u, 3n/4)R(B),

(13b)

for paths 1 and 2, respectively (see Fig. 1). The rotation
R(B) does not commute with the Lorentz boosts, and
has to be removed. This is done experimentally by
correcting with a phase shift 8, such that R(b)R(b, ) =
o.o. Assuming this constraint and using Eqs. (12), the
transformations Eqs. (13) can be written as

L~(u, P) = a (u)A(u*, P')R(B —8s/2), (14a)

L2(u, P) = a (u)A(u*, P*)R(8 + 8g/2) . (14b)

These transformations involve a stretching, a contraction,
and a rotation (the points on a circle are rotated and
transformed into an ellipse). Therefore, by varying the
phase 8 of the perturbing signal in Eq. (1), the component
of the response $(t) at the frequency cuR goes through a
minimum and maximum corresponding to the minor and
major axes of the ellipse. Berry's phase will then be
the difference between the phases 8;„corresponding to
the minimum for each of the two paths in Eqs. (14), i.e.,

1 2
~B ~min ~min ~

A schematic of the experiment is shown in Fig. 2. At
the heart of it are two nominally identical nonlinear oscil-
lators shown in the inset. The nonlinearity is obtained by
using a diode (BB212) in the oscillator section whose ca-
pacitance C(V) is a function of voltage. There are isolating
amplifiers both before and after the oscillator section. The
inductor Lo and resistor Ro were adjusted so that both oscil-
lators had the same resonant frequency (f& = co+/2m. =
50 kHz) and damping (Q = 14.7 4- 0.4). In principle we
would like as large a Q as possible, but it was found in

fa ~fa

HP 8904A
SYNTHESIZER c(v)

FIG. 2. A schematic of the experiment (see text). Inset: a
schematic of one of the nonlinear oscillators.

practice that the measurement became too sensitive for
larger values. However, the Q was large enough so that
it was possible to use the theory with the damping correc-
tions discussed at the beginning of the paper.

The oscillators were driven by a Hewlett-Packard
HP8904A frequency synthesizer which provided both fR
and 2fR and control over the phase 8. The perturbing
amplitude Aq was set at 1 mV which was small enough
so the theory would be valid. The drive amplitude
AD was typically 200 mV. It was adjusted so that it
was normalized relative to the (identically adjusted)
bifurcation points of the oscillators. The drive frequency
was split and connected directly to oscillator 1 and
phase shifted by P before entering oscillator 2 [i.e.,
P = 0 for oscillator 1; see Eq. (1)]. Therefore, the phase
P, determined by the constraint Eq. (8) and Eqs. (12),
selected either path 1 or path 2 (see Fig. 1).

The perturbing signal was fed into oscillator 1. Since
we are interested only in the signal at fR, the output from
oscillator 1 was first notch filtered at 2fR to strongly
suppress that component and then bandpass filtered at
fR to remove the higher hartnonics produced by the
nonlinearity of the oscillator. As discussed earlier, an
additional rotation R(B,) was included since there must
be no phase rotation from the output of oscillator 1 to
the input of oscillator 2. Then, since the signal at fR
is amplified by oscillator 1, it must be attenuated back
to its original small amplitude before entering oscillator
2. Phase shifts were measured with a Stanford Research
SR850 lock-in amplifier with a 10 MA probe. (The
insertion of the probe affected the impedance of the circuit
under measurement, so there was always an uncertainty of
~1% in any phase measurement. ) Finally, the output from
oscillator 2 was measured with the lock-in amplifier and
the amplitude of the signal at fq recorded as a function of
the phase shift 8. The value 8;„(u) which corresponded
to a minimum in the amplitude was recorded together with
the value of the normalized amplitude u. This procedure
was repeated for both paths 1 and 2. The difference
of these phases yields the Berry's phase, i.e., 8&(u) =
8';„(u) —8;„(u) which is shown in Fig. 3. It is seen
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FIG. 3. Berry's phase 8& as a function of the normalized
driving amplitude u = Ao/Ac. The solid line is the theoretical
curve computed from Eq. (10).

that the agreement between the measured and theoretical
values is very good.

One should note that the experiment was not performed
merely to simulate the Lorentz group. Rather, it is an

example of a large class of nonlinear systems which, when
tuned in the vicinity of an instability, show, surprisingly,
a response similar to a Lorentz boost. It is interesting to
note the similarity between the above nonlinear theory in
which dissipation is an important part and optical phase
squeezed states [17].
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