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Superluminahty, Parelectricity, and Karnshaw's Theorem in Media with Inverted Populations
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Population inversion leads to the phenomena of superluminality, in which wave packets can propagate
dispersionlessly near dc faster than c, and parelectricity, in which the dc susceptibility is negative,
implying the levitation of a charge above a parelectric medium. Also, charges placed in a cavity
surrounded by a parelectric medium form stable configurations, in seeming violation of Earnshaw's
theorem. Einstein causality is not violated.

PACS numbers: 41.20.Cv, 41.20.Jb, 42.25.Bs, 42.52.+x

Since the pioneering work of Gordon, Zeiger, and
Townes on the ammonia maser forty years ago [I], it
has been well known that the inversion of populations
of atomic and molecular energy levels leads to stimu-
lated emission, and hence amplification, of electromag-
netic radiation. However, it is not well known that the
same inversion of populations also leads in principle to
superluminal propagation of wave packets, whose group
velocity near dc can exceed c without violating Einstein
causality [2). It is also not well known that population
inversion, which implies the existence of parelectric me-
dia with negative dc electric susceptibilities, leads to sur-
prising consequences in electrostatics. (Parelectric media
should not be confused with paraelectric media, which
are ferroelectrics just above their Curie points. ) We show
here that the existence of a parelectric medium implies
the possibility of levitation of a test charge in the vacuum
above this medium, as well as stable electrostatic configu-
rations of charges placed inside an evacuated cavity sur-
rounded by this medium. The resulting apparent violation
of Earnshaw's theorem will be discussed.

We shall begin by considering a concrete example of a
medium with inverted populations. Because of tunneling,
the nitrogen atom in the ammonia molecule, NH3, can be
either above the plane of the hydrogens, or below it. This
leads to a splitting (approximately 24 GHz) of the K 4 0
rotational levels of the molecule, in which the lower en-
ergy state I+) is the symmetric linear combination of the
two possible configurations of the nitrogen atom, and the
upper state I

—) is the antisymmetric linear combination of
these two possibilities. Upon the application of a dc elec-
tric field, the two energy eigenvalues associated with this
doublet repel away from each other. The energy level
shifts can be readily calculated by means of second or-
der perturbation theory, yielding for the upper and lower
states, respectively,

bW- = +2lctlf ~ 0 and AW+ = —
—,Ical~' & o,

where 8 is the dc electric field strength, and Ial is a
positive constant. Now the change in energy of a small
sphere of polarizability n placed in an applied dc electric

field 8' is given by

1
p dE = ——uE',

p 2
(2)

(3)

where y is a (small) phenomenological line width,
Qp p is the resonance frequency of the medium, and
tdt, = (4m Ne If I/m)'i is the effective plasma fre-
quency, where N is the number density of atoms or
molecules in the upper state, e is the electron charge,
Ifl = 2mcdol( —I&I+)I /it is the absolute value of the
oscillator strength of the transition, and m is the electron
mass. (Typically, y « cd~ && tdo. ) Note that the minus
sign in front of the second term under the square root
in Eq. (3) arises from complete population inversion:
It differs from its usual positive sign for an uninverted
medium. As a result of this sign change, the index
of refraction near zero frequency is less than unity,

where the induced dipole moment p is related to the in-

ducing electric field E by p = uE. Hence the polariz-
ability of molecules in the lower state, n+ = +Ial ) 0,
is positive, whereas the polarizability of molecules in
the upper state n = —lal & 0 is negative One . im-
mediate consequence of this is that the dc susceptibility
g(0) = NIaI of —amtnonia gas with all its molecules in
the upper state is negative; i.e., this medium is parelec-
tric (We neg.lect local field corrections, although these
become important in parelectric condensed matter. ) Such
a medium is in a metastable, but not thermodynamic, equi-
librium. The imaginary part of the susceptibility of this
inverted medium undergoes a sign reversal with respect to
that for an uninverted medium, thus leading to microwave
amplification by stimulated emission of radiation. The
real part of the susceptibility of this inverted medium,
which also undergoes a sign reversal with respect to that
for an uninverted medium, can lead to striking new phe-
nomena, such as superluminality and parelectricity.

We shall first discuss the phenomenon of superluminal-
ity. The refractive index of a completely inverted two-
level medium is given by

y
I/2

n(td) = 1—
tdO td tytd ]
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n(0) = (1 —co„/coo)'t2 & 1. From Eq. (3) it also fol-
lows that the slope d(Ren(co)j/des approaches zero as
cu 0. Hence the medium is dispersionless near dc.

Now let a classical, finite-bandwidth wave packet,
whose carrier frequency coo/2n. (say around 1 6Hz) and
spectrum lie far below the resonance frequency coo/2'
24 GHz of the ammonia molecules, be incident upon a
medium consisting of a gas of these molecules prepared
entirely in the upper state. The amplitude of this wave
packet will be chosen sufficiently small so that only the
linear response of the medium to this weak perturbation
need be considered. The fact that n(0) & 1 implies that
the phase velocity, vp(0) = c/n(0) ~ c, is greater than
the vacuum speed of light c. It is well known that phase
velocities can exceed c without any violation of relativity.
However, more surprisingly, here near zero frequency the
group velocity,

('dRe k(ru

da) )~c 0

dRe n
c Ren(a)) + cu

dM ~c~o

c
& c,

n(0)
(4)

is equal to the phase velocity, and therefore also exceeds
c. Furthermore, in contrast to a medium in its ground
state, since this inverted ammonia medium can temporar-
ily loan part of its stored energy to the forward tail of the
wave packet, the energy velocity [3],which is the velocity
of energy transport, is also superluminal

(5) c c
vE(0) —= = = & c, (5)

(u) ge(0) n(0)
where (S) is the time-averaged Poynting vector, (u) is
the time-averaged energy density, and e(0) is the zero-
frequency dielectric constant. Energetically, a medium
in its ground state requires an initial transfer of energy
from the wave to the medium in order to polarize it, thus

leading to a retarded transmitted wave packet. However,
when the medium possesses an inverted population,
energy is stored in the medium, thus allowing an initial
transfer of energy from the medium to the wave [4]. The
transmitted wave packet can now be advanced rather than
retarded, thus leading to the possibility of superluminal

propagation.
All of the above wave velocities are equal to each

other because this medium with inverted populations
is essentia11y transparent and dispersionless near zero
frequency, as it is for any dielectric medium near cu = 0.
Thus, dispersionless superluminal propagation occurs in
a wide spectral window stretching from dc to the low-
frequency side of resonance. By Fourier's theorem, any
arbitrary wave packet or wave form should travel through
this medium superluminally without appreciable change
in amplitude or shape, provided that its total bandwidth
is finite and lies far below resonance. This superluminal

propagation can be thought of as a causal wave-form-
reshaping process in which the weak forward tails of the
wave form undergo virtual amplification by the inverted
medium, followed by virtual absorption of the peaks
of the incident wave form. This produces an advanced
wave form (versus a retarded wave form produced in an
ordinary medium), which faithfully reproduces the entire
incident wave form, no matter how complex.

A more general way to demonstrate these results is to
start from the Kramers-Kronig relations for the complex
electric susceptibility g(~), from which one can derive
the zero-frequency sum rule (Sec. 62 of [5])

g(0) =—2 "
Imp(ru)

dh) (6)

where g(0) is the (real) zero-frequency susceptibility. In
the case of the ammonia gas with inverted populations,
Im g(cu) & 0 in the range of frequencies near the strong
low-frequency resonance at 24 GHz, which gives the
dominant contribution to the integral in Eq. (6). From
this it follows that the dc electric susceptibility g(0) is
negative, or equivalently, that the dc dielectric constant
e(0) = 1 + 4m. g(0) & 1 is less than unity. Thus, the
medium is parelectric. It also follows that the index of
refraction near zero frequency,

n(0) = e(0)' ' = [1 + 4m. g(0)]' ' & 1, (7)

is also less than unity. Since the medium is dispersionless
near dc (a fact that also follows from the Kramers-
Kronig relations; see Sec. 64 of [5]), the phase, group,
and energy velocities all exceed the vacuum speed of light
c. Since we have now proved that both parelectricity
and superluminality follow from the Kramers-Kronig
relations, these results do not depend on the validity
of any specific model such as the Lorentz model, or
the two-level model. Also, since causality was used
to derive these relations, causality cannot be violated
by these conclusions. In general, the Kramers-Kronig
relations imply that any medium with gain gives rise to
superluminal group velocities in a transparent spectral
window separate from the region with gain [2,6,7].

Einstein causality is not violated by these conclu-
sions, because there is no information contained in the
peaks of the wave packet or wave form which is not
already present in its weak forward tails. New infor-
mation is communicated only when there is an unex-
pected change, e.g., a discontinuity in the wave form,
whose arrival time cannot be inferred from its past be-
havior. A simple example of such a discontinuity is
that of a step-modulated sine wave, which Sommer-
feld and Brillouin used as their incident wave form
in their study of precursors [3]. Such discontinuous
wave forms, in contrast to the smooth, finite-bandwidth
wave packets or wave forms which we consider here,
contain components at infinite frequency, so that it is
the infinite-frequency index of refraction, n(~) = 1, that
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determines the propagation speed of the discontinuity.
Thus the propagation speed of discontinuous signals is
exactly c.

It is helpful at this point to review Sommerfeld and
Brillouin's definitions of various wave velocities [3]. For
an absorptive, dispersive medium, they found it necessary
to define five different kinds of wave velocities: (1)
the phase velocity, at which the zero crossings of the
carrier wave would move; (2) the group velocity, at
which the peak of a wave packet would move; (3) the
energy velocity, at which energy would be transported by
the wave; (4) the "signal" velocity, at which the half-
maximum wave amplitude would move; and (5) the front
velocity, at which the first appearance of the discontinuity
would move. All these five velocities differed from each
other in the region of anomalous dispersion near an
absorption line. The first two kinds of wave velocities,
the phase and group velocities, might be superluminal (in
fact, they might become infinite, or even negative), but
the next two kinds, the energy and signal velocities, were
subluminal under all the circumstances they considered.
The last kind, the front velocity, was equal to the vacuum
speed of light c.

However, their "signal" velocity should not be con-
fused with the information velocity of special relativity,
which must be strictly less than or equal to c. We have
shown that in the case of a medium with inverted popula-
tions, due to its dispersionlessness, all the first four kinds
of wave velocities (the phase, group, energy, and signal
velocities), when extended to the low-frequency, finite-
bandwidth wave packets considered here, are superlumi-
nal, and that only the fifth (the front velocity) is not. We
have identified the front velocity as the information ve-
locity of special relativity. Thus there is no violation of
Einstein causality.

In the above classical analysis, we have ignored issues
of signal-to-noise ratios. Quantum noise associated with
spontaneous emission, however, should not affect these
conclusions [4). The effect of Johnson noise has not been
taken into account here, but we do not expect it to change
these results.

We shall now discuss the consequences of parelec-
tricity. In analogy with magnetism, where diamagnetism
and paramagnetism correspond to the screening and an-
tiscreening, respectively, of an applied dc magnetic field
by media with opposite signs of the magnetic suscepti-
bility, here we can have the phenomena of dielectricity
and parelectricity, which correspond to the screening and
antiscreening of an applied dc electric field, respectively,
by media with opposite signs of the electric susceptibility.
In the usual textbook discussions of dielectrics, the pos-
sibility of parelectric media is either not discussed at all,
or dismissed as being unphysical on the basis of equilib-
rium thermodynamic arguments (Secs. 14 and 61 of [5]),
which by their nature do not encompass the possibility of
rnetastable, inverted media.

Parelectric media can lead to striking new phenomena
in addition to superluminality. In analogy with a small
ferromagnet which can be levitated above a superconduct-
ing surface, a small ferroelectric body can, in principle, be
levitated above a strongly parelectric surface. The origin
of this phenomenon lies in the fact that the image charge
q;,g„ induced by a test charge q„„placed in the vacuum
above a planar surface of a dielectric medium, is given by

qimage
1

+ 1
qtest ~

(10)

—i/2 3/4 I/4 /1 + el i/4

~Ivertical 2 /test g m
1 —ej

Absolute stability for all directions of displacement can
be achieved by levitating the test charge above a bowl-
shaped parelectric medium.

We have also solved the problem of the mechanical
stability of a test charge placed at the center of an
evacuated spherical cavity of radius a surrounded by a
uniform parelectric medium, in the absence of gravity.
The force experienced by the test charge after it is
displaced from the center by an infinitesimal displacement
dr is given by

22
1+ 2e a3 (12)

This again has the form of Hooke's law, provided that
e ( 1, i.e., that the medium surrounding the spherical

where e —= e(0) is the dc dielectric constant. In the case
of ordinary dielectrics with e & 1, the image charge has
the opposite sign from the test charge, and this fact
leads to mechanical instability: The test charge is unstable
due to the increasing mutual attraction toward its image,
as it approaches the surface. However, in the case of
parelectrics with e & 1, there is a qualitative change in
the behavior of the system. Now the image charge has
the same sign as the test charge. This leads to a mutual
repulsion between the test charge and its image charge.
Levitation of the test charge above a parelectric medium
results. The equilibrium height h of the levitated test
charge above the surface of the parelectric is given by

—i/2
1 /I —e& 1

h = 2tit. t I(1 I, (9)2 (1+ e) mg

where m is the mass of the test charge, and g is the
acceleration due the Earth's gravity. An infinitesimal
displacement in the vertical direction dh results in a
Hooke's restoring-force law

4 (1+ ~&'/2
dF = — (mg) I I dh,

qtest k 1 &)

implying stable equilibrium in the vertical direction for
e ( 1. Neutral stability, however, holds in the two
horizontal directions. Small vertical displacements from
equilibrium result in simple harmonic motion at an
angular frequency
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cavity is parelectric. (In the case of ordinary dielectrics
where e ) 1, the equilibrium at the center is unstable. )
This solution was obtained both by using the method
of separation of variables in spherical coordinates and
also by using the method of images [8], with the usual
boundary conditions applied at the surface of the spherical
cavity (i.e., the tangential components of the electric
field are continuous; the normal components of the
displacement field are continuous) [9]. Equation (12)
can be interpreted as the force on the test charge arising
from an approximate, induced image charge located at a
distance a2/r from the center of the spherical cavity along
a common radial line with the displacement r of the test
charge when r is small. The sign of the image charge is
the same as that of the test charge, which leads to mutual

repulsion and hence a restoring force. Consistent with

the spherical symmetry of the cavity, the spring constant
associated with Eq. (12) is isotropic. Hence, the center
of the spherical cavity is a point of stable equilibrium
for a test charge surrounded by a parelectric. This point
of stability is in the vacuum. Simple harmonic motion
results from small displacements in any direction, the

angular frequency of which is given by

i/2 3/2 1
A~, ~

= &2q„„m 'i a i . (13)
1 +2@

Solutions can also be obtained for configurations of sev-

eral charges placed inside the spherical cavity; for instance,
four identical test charges form a stable tetrahedral struc-
ture inside the cavity. Purely electrostatic traps for charged
particles, which are different in principle from the Paul and

the Penning traps, should be possible to construct.
An apparent contradiction arises with Earnshaw's the-

orem in electrostatics; i.e., no stable equilibrium exists
for any static configuration of charges in a vacuum, when

they are acted on by electrical forces alone. This theorem
can be generalized to include conductors and dielectrics
in the vicinity of these charges [10]. However, the con-
ditions of this generalized version of Earnshaw's theorem
must be incomplete, since the above solutions are coun-

terexamples of this theorem as it is stated in [10]. This
contradiction requires further study, but it should be re-
membered that parelectrics are metastable media which

are not in thermodynamic equilibrium.
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