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Extremal Black Holes as Exact String Solutions
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We show that the leading order solution describing an extremal electrically charged black hole in

string theory is, in fact, an exact solution to all orders in n when interpreted in a Kaluza-Klein
fashion. This follows from the observation that it can be obtained via dimensional reduction from a
five-dimensional background which is proved to be an exact string solution.

PACS numbers: 11.25.—w, 04.70.Dy

One of the goals of string theory for many years has been
to find exact black hole solutions in four dimensions. The
first nontrivial string (u') corrections to the Schwarzschild
solution have been investigated [1], and solutions to the
leading order equations describing charged black holes
have been found [2—4]. Exact black hole solutions have
been constructed in two [5] and three [6] dimensions using
(gauged) Wess-Zumino-Witten (WZW) models based on
the group SL(2, R). In addition, using the result that
the extremal limit of a black five-brane [7] is an exact
superstring solution [8], one can (trivially) dimensionally
reduce to obtain an exact five-dimensional extreme black
hole. This black hole has a magnetic type of charge
associated with the antisymmetric tensor field. It has
recently been shown that one can also dimensionally
reduce the exact solution in [8], down to four dimensions
[9] to obtain an extreme magnetically charged black hole
[10]. (These exact five- and four-dimensional black hole
solutions are asymptotically Oat. In addition, there are
coset conformal field theory or gauged WZW constructions
of just the "throat" regions of some four-dimensional
extreme magnetically charged dilatonic black holes [11].
The fact that the form of the throat solution is unchanged
under string corrections was noticed earlier [12].)

We shall present an exact solution describing an
extremal four-dimensional electrically charged black hole
in (super)string theory. There are several important
differences between this and earlier work. First, the
electrically charged solutions are qualitatively different
from their magnetic analogs. The extremal magnetically
charged solutions found in four and five dimensions are
products of a timelike line and a Euclidean solution.
So the Lorentzian nature of the solution plays no role.
The extremal electrically charged solution, on the other
hand, has a nontrivial timelike direction. Second, the
previous four- and five-dimensional extreme black holes
were sho~n to be exact solutions only in the superstring
(or heterotic string) theory. Extended supersymmetry (on
the world sheet related to that on space-time) played a key
role in the argument [8] that there are no u' corrections

to the leading order backgrounds. The solution we will
discuss, like the previous two and three dimensional
examples, is exact already in the bosonic string theory.

The extremal black holes we shall consider are known
to be supersymmetric [13] and can be lifted to ten
dimensions in such a way that they are dual to special
plane fronted waves [14]. However, a priori these
properties by themselves are not sufficient to establish
that extreme black holes are solutions to all orders in n'.
We will see that another special property of the extremal
electric black holes (related to a particular chiral coupling
of the string to the background) can be used to show that
they are exact solutions.

To satisfy the constraint on the central charge, every
solution with an asymptotically Oat four-dimensional
space-time must have a number of internal dimensions.
One could assume that the full solution is a simple product
of the four-dimensional one with a small torus. However,
one could equally well assume a tilted product in which
off-diagonal components of the higher dimensional fields
give rise to four-dimensional gauge fields. This is the
approach we will adopt. We will, in fact, consider mainly
the closed bosonic string theory which has no fundamental
gauge fields in the higher dimensional space.

It suffices to consider one nontrivial extra dimension
(with the remaining ones taken to be a trivial product).
We will show that a particular five-dimensional bosonic
string background is an exact solution and that its dimen-
sional reduction yields

ds2 = F(r)dt + dr + r—dQ, A, = F(r),

@(r) = Po + 2 lnF(r), F (r) = 1 + M/r,

where dA denotes the metric of a unit 2-sphere, A„
is the gauge field potential, @ is the dilaton, and M is
twice the Arnowitt-Deser-Misner mass. This background
is precisely the extremal limit of the known leading order
solution describing an electric dilaton black hole. In this
sense one can say that the leading order extremal black
hole solution is exact [15].
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Let us first describe a simple application of using
dimensional reduction to find exact extremal black holes
in string theory. Consider the five-dimensional plane
fronted wave

ds = du dv + K(r)du + dr- + r dfl,

K(r) = 1 + M/r.
(2)

This background (with constant dilaton and no additional
fields) is an exact solution to bosonic string theory [16].
To reduce to four dimensions with u as the internal
coordinate, we rewrite (2) in the form

ds = K(du + —,K 'dv) —~K
' dv- + dr +r d-A. -

8„„=—,F(r), @ = Po + -„ lnF(r),

F(r) = (1 + M/r)
(6)

where 8„, is the antisymmetric tensor. If one writes
v = y + t, u =

&
—t and reduces this solution to four

dimensions by assuming y to be the internal coordinate,
one again obtains the extreme Kaluza-Klein black hole

(4) [19]. This is not surprising since the fundamental

string solution (5) is related to the plane fronted wave (2)
by a space-time duality transformation [20], and it turns

out that the Kaluza-Klein metric is invariant under this

duality. The main effect of the duality transformation
is that the gauge field in four dimensions now comes
from the antisymmetric tensor B„„and not from the off-
diagonal components of the metric.

To obtain the extreme black hole (1) in four dimen-

sions, we must start with the following generalization of
the fundamental string solution:

ds = F(r)du dv + du + dr + r df), (7)

with 8„„P,and F again given by (6). This background
was found to be a solution of the leading order string
equations in [21] and was further discussed in [22]. We
will show that the arguments in [17] can in fact be
extended to establish that (7) is also an exact solution.
But first, we describe some properties of this solution and
show that its dimensional reduction yields the extreme
charged black hole.

Letting t = v/2 the four-dimensional (string frame) met-
ric, gauge field, and scalar (G„„=e -'

) are thus

ds = —K '(r)dt + dr + r dA, A, = K '(r).
I (4)

o = ——, lnK(r).

This is just the extremal electrically charged Kaluza-Klein
black hole [2,10]. So the extreme Kaluza-Klein black
hole can be viewed as an exact string solution.

We have recently shown [17] that a class of solutions
to the leading order bosonic string equations are, in fact,
exact. Included in this class was the five-dimensional
fundamental string solution [18]

ds = F(r)du dv + dr + r dII, (5)

Unlike the fundamental string (5), the metric (7) has
a regular ergosphere. This can be seen by introducing
new coordinates ~~ = i —t, v = 2t. so that the metric
becomes

—M, 2M
dt —— — dt d~r+M, r ~M

+ dy-' + d]--' + r- dk)

It is now clear that the Killing vector A/At, which is a
unit time translation at infinity, becomes null at r =—M.
This surface is an ergosphere and not an event horizon
since it is timelike. One can still travel from )- ~ M to
)- & M provided one moves in the y direction. Although
the metric components remain finite at r = 0, the metric
becomes degenerate there and the curvature diverges.
One can view (7) as the extremal limit of a charged black
string [7] with nonzero momentum.

If » is periodically identified with a small period,
the generalized fundamental string (8) will appear as
four dimensional. We can obtain the effective four-
dimensional geometry be rewriting (8) in the form

1
M

d) dt — , dt
r + M (r + M)'-

+ d)--' + ).-'dB. I9)

Thus the four-dimensional metric is precisely that of
the extreme electrically charged black hole (1). Note
that the dilaton is the same as in five dimensions since
the "modulus" field from the dimensional reduction is
constant. The gauge field now comes from both the off-
diagonal components of the metric and the antisymmetric
tensor which are equal (up to a gauge transformation).

We now turn to the demonstration that the background
(6) and (7) [or (8)] is an exact string solution. The
bosonic string in a "massless" background is described
(in the conformal gauge) by the o. model

L = (G„,, + 8„,) (X)dX" AX' + n'R@(X),

where G„, is the space-time metric, and R is related
to the world-sheet metric y and its scalar curvature by
R =—~~yR'2I. Consider a o. model of the form

LF = F(x)du dv + dx' dx' + n'R@(x) (1 1)

It was shown in [17] that this model is conformally
invariant to all orders (in a particular scheme) if

A F ' =0, P = @0+;lnF(x). (12)

The D = 5 fundamental string solution corresponds to
the case of F ' = 1 + M/r. The key feature which

enables one to establish the conformal invariance to all

orders is the chiral coupling of the u and v fields to
the background, which is obtained by setting G„=B„.
This results in the two chiral currents associated with
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the null translational symmetries. It turns out that a
single chiral current associated with a null symmetry
is sufficient to establish the conformal invariance of
similar backgrounds to all orders provided the one-loop
conditions are satisfied. This means that a much larger
class of leading order solutions can be shown to be exact.
The most general situation will be discussed elsewhere
[23]. Here we consider the following class of o. models
which includes (6) and (7) as a special case:

LFg = F(x)Bu Bv + K(x)Bu Bu + Bx' Bx' + n'RP(x).

(13)
To find the exact conditions of conformal invariance

we follow [17] by introducing the source terms L„„„,=
V(z)BBu + U(z)BBv + X(z)BBx (where z denotes the two
world-sheet coordinates) and performing the path integral
over v. The resulting 8 function sets Bu = F ' BU (up
to a zero mode which we absorb in U). We arrive at the
following effective x theory:

L'F~ = Bx' Bx' —F '(x)BU BV

+ K(x)F '(x)BUBB '[F '(x)aU]

+ n'R(@ —
2 ln F + X BBx, (14)

where the shift in P comes from the determinant and we
make use of a special scheme to keep the free kinetic term
of x' unchanged (see [17]). The conditions of conformal
invariance of the O(BU BV) term are the same as for
the model with K = 0 (12). The conformal anomaly
must be local, so that only the local part of the nonlocal
O(&U BU) term may contribute to it. Since this nonlocal
term already contains two factors of BU, it cannot produce
BX-dependent counterterms. That means we may expand
the functions KF ' and F ' in it near a constant, x'(z) =
x0 + g'(z). Then the only contractions of the quantum
fields g' that can produce local O(BU BU) divergences
are the one-loop tadpoles on the left and right sides of the
nonlocal operator 8 '. As a result, we find the conformal
invariance condition F '82(KF ') + (KF ')82F ' = 0,
or combined with (12),

8 F ' = 0, 8 (KF ') = 0, @ = $0 + z lnF(x).

When K = 0 these conditions obviously reduce to (12).
When F = 1, the o. model (13) describes the standard
plane fronted wave and (15) gives the usual 82K = 0 con-
dition for this background. The five-dimensional solution
(7) which yields the charged black hole corresponds to the
simplest nontrivial generalization (13) of the fundamental
string (ll) with K = 1.

The above discussion was in the context of the bosonic
string theory. A generalization to the case of the closed
superstring theory is straightforward. One only has to re-
peat our arguments starting with the (1,1) supersymmet-
ric extension of the bosonic o. model (13) (and to note
that the one-loop conformal invariance conditions are the

same as in the nonsupersymmetric case), with the con-
clusion that the above bosonic backgrounds also represent
the superstring solutions.

Moreover, the same conclusion applies to the (1,0)
supersymmetric heterotic extension of our o- model, i.e.,
it is conformal without the need to introduce a Yang-
Mills gauge field background [23]. Therefore, the exact
bosonic solution (6), (7) is also an exact D = 5 solution
of the heterotic string theory. Like the bosonic one, it
can also be given a Kaluza-Klein interpretation as a four-
dimensional extremal electric black hole background.

Given a D = 4 leading order bosonic background,
its embedding into the heterotic string theory is not
unique. The embeddings of extremal D = 4 dilatonic
black holes, in which the U(1) gauge field has Kaluza-
Klein and not heterotic Yang-Mills origin, have extended
(N = 2, D = 4) space-time supersymmetry [13]. This
suggests [24] that the corresponding world-sheet theory
should presumably have (4,0) supersymmetry [25] and
thus, as in the case considered in [8], the leading-
order higher-dimensional superstring or heterotic string
solutions should remain exact [23].

At the same time, there should also exist a related
solution of the heterotic string theory formulated directly
in D = 4. In fact, the charged dilatonic black hole may be
considered as a nonsupersymmetric leading order solution
of the D = 4 heterotic string theory, with the charge being
that of the U(1) subgroup of the Yang-Mills gauge group.
This solution must have an extension to higher orders in
a' which, in general, may not be the same as the above
"Kaluza-Klein" solution [26].

To summarize, we have found an exact five-dimensional
string solution (6) and (7) which reduces to the extremal
electrically charged black hole (1) in four dimensions.
Our results further support the special nature of extremal
black holes. In particular, the exactness of the leading
order extremal electric black hole implies that the extreme
charge to mass ratio should not be renormalized by u'
corrections. Our method does not apply to nonextremal
black holes which are likely to have u' corrections in all
renormalization schemes. (It is easy to show that this is
the case for the Schwarzschild solution. )

One of the motivations for having exact black hole so-
lutions is to better understand the behavior of strong gravi-
tational fields and the possible existence of singularites in
string theory. Some preliminary observations are the fol-
lowing. In the bosonic string theory, the solution appears
as four dimensional with a null singularity at low energy.
However, as one approaches the singularity, one discovers
that the solution is fundamentally the product of a five-
dimensional solution and a torus. The five-dimensional
solution has an ergosphere with a curvature singularity
inside. Whether this singularity adversely affects string
propagation remains to be seen. One should note that the
string coupling e~ goes to zero near the singularity, sug-
gesting that quantum corrections will be suppressed.
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As we noted earlier, the methods used here can be
applied to a larger class of backgrounds to show that many
low energy solutions are, in fact, exact. These include the
recently discovered dilatonic Israel-Wilson-Perjes metric»
[27,28]. The details will be given elsewhere [23].
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