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Self-Consistent Boundary Conditions in the 2D XY Model
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A generalization of periodic boundary conditions to incorporate fluctuations with wavelength larger
than the system size is discussed. These boundary conditions are applied to Monte Carlo calculations
on the two-dimensional XY model. The finite-size effect on the vortex-vortex correlation function,
and thereby the dielectric function, is shown to be virtually eliminated. These Monte Carlo data are
shown to be in excellent agreement with the Kosterlitz renormalization group equations, and the critical
temperature is found to be T, = 0.8922(2).

PACS numbers: 05.50.+q, 64.60.Fr, 75.10.Hk, 75.40.Cx

Monte Carlo (MC) simulations together with finite
size scaling have proven to be flexible and powerful
tools for the analysis of model systems in statistical
physics. The behavior in the thermodynamic limit may
often be extracted through analysis of the size dependence
of various quantities. In these cases periodic boundary
conditions (PBC) seem to be both a natural and an
ideal choice. The periodic boundary conditions are,
however, not ideally suited for determinations of spatial
correlations, as, e.g., the spin-spin correlation function.
Because of the periodicity, reliable results for such
quantities are obtained only for distances much smaller
than the size of the lattice.

For determinations of that kind of quantities, one would
ideally have the finite simulated system embedded into
an infinite one, since that would eliminate all finite-
size effects. While that is impracticable, we see that
a major difference between such an embedded system
and a system with ordinary PBC would be the presence
of fluctuations with wavelength larger than the size of
the system. The main ideas of the present paper are
therefore, first, to generalize the PBC to incorporate long-
wave fluctuations and, second, to take due account of
the effect of the imagined surrounding to optimally tune
the amplitude of these fluctuations. We will, specifically,
show how this may be accomplished for a system with
a continuous degree of freedom —the two-dimensional
(2D) XI' model.

The 2D XY (planar rotator) model is defined by the
Hamiltonian

H = —J icos(8; —81),
(~j)

where i and j enumerate the lattice sites, 8; is an angle as-
sociated with site i, and the sum is over nearest neighbors.
The 2D XY model undergoes a Kosterlitz-Thouless transi-
tion [1,2] which at a square lattice, the case discussed in
the present Letter, takes place at T, = 0.89J [3—8].

In this model the helicity modulus Y is a candidate
for finite size scaling. Hyperscaling implies that Y obeys
the Josephson relation and at criticality scales as L2 "
[9], where L is the system size and d is the dimension.

This approach works well in analyses of MC data in
three dimensions [9] but is not useful for d = 2. This
is because Y in two dimensions approaches a constant
logarithmically; the approach is therefore exceedingly
slow. One can, however, improve the situation consid-
erably by making use of some knowledge of the approach
to this constant, from Kosterlitz' renormalization group
(RG) equations.

To facilitate a comparison between the predictions from
the RG equations and MC data, we need to determine the
dielectric function e, (k) [1]. This is therefore the central
quantity in the present Letter. The dielectric function is
directly related to the effective vortex interaction, which
below T, is logarithmic for all r, and at T 0 is given
by [1]

V(r) ——2m J ln r ~ V(k) = —4m' JG(k),

where G(k) = (2 cos k„+ 2 cos k~
—4) ' is the lattice

Green's function. The dielectric function describes how
V(k) is reduced from this zero-temperature result:

4m JG(k)
e, (k)

It turns out that 1/e, (k) may be expressed in terms of the
correlation function [10]

J
et(k)

where Ju = (cos(8; 8, )) is the contribution from the
spin waves, L2 is the number of lattice points, and n(k)
is the Fourier transform of the vorticity distribution [10].
We use 1/e, (k) for the quantity that contains contributions
from both spin waves and vortices, in contrast to 1/e(k)
that solely contains the effect of the vorticity, i.e., the
rotation of the current [10].

Monte Carlo results for the dielectric function in a
system with PBC are shown by the symbols above the
dividing line in Fig. 1. The data are for T = 0.89J (close
to T,) and four different lattice sizes, L = 8, 16, 32, and
64. The finite-size effect is very pronounced; 1/e, for
constant k decreases with increasing lattice size. The MC
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In view of the two sets of symbols in Fig. 1, one
would expect a reduced amplitude in the 5 fluctuations
to give smaller finite-size effects in the MC simulations.
Considering the L X L system in our simulation as
being embedded in an infinite surrounding medium„ this
amounts to taking the stiffness of this medium against the
twist fluctuations into account. The amplitude may be
controlled by including a second term in the Hamiltonian,

H = —

Juncos(8;

—8, + r„A/L) + p,
~

' +-
(ij)

-' J

FIG. 1. Shown are MC data for periodic and fluctuating
boundary conditions at T = 0.89J, close to T, For PBC (points
above the solid line) 1/e, decreases with increasing lattice size,
whereas it increases for FBC (points below the solid line). The
solid line is the common limiting function as L ~. The
statistical uncertainties are smaller than the size of the symbols.

By adjusting p we may go continuously from periodic
to fluctuating boundary conditions, p = ~ to 0. We
now address the question how p, should be chosen, to
mimic the behavior of the surrounding medium in the best
possible way.

In the zero-temperature limit, the amplitudes of the
twist fluctuations fulfill [10)

simulations are done with Wolff's cluster update method

[11],with typically 2 x 106 update sweeps on the largest
lattices.

Since we like to introduce fluctuations with long
wavelength, we then include twist variables 6 and 5,, as
another pair of dynamic variables. One may think of these
variables as being situated at the respective boundaries of
the system, such that the angular difference across the
boundaries become OLy + 5, —

OLy and O, L + 5,,
—

0, i for the respective directions. This is the definition
of the fluctuating boundary conditions (FBC).

For most purposes it is, however, convenient to spread
these twists over the whole system instead of keeping
them at the boundary. This is done with the substitution

8; 8; + r; . 4/L, where 5 = (6„,b„,). The angular
difference then becomes

8; —8, ~ 8; —8, +r;, 5/L,

where r;j is a unit vector from site j to i.
The symbols in the lower part of Fig. 1 are MC data

from simulations with fluctuating boundary conditions.
Note that the finite-size effect in this case is the opposite
to what was found for PBC; the values increase with

increasing lattice size. This is due to the too large
amplitude of the twist fluctuations, which causes too large
fluctuations for all k.

In these simulations the update of the 5 variables was

done with the ordinary Metropolis algorithm whereas the

spin variables (8;) were handled with Wolff's cluster

update algorithm. The cluster update works well as long
as the clusters do not close after crossing the boundary.
In that case the cluster becomes invalid, and the previous
configuration has to be restored [12]. Even though a

large portion of the time was wasted on such clusters
that eventually grew too large, the cluster update in our

comparisons was considerably more efficient than the

ordinary Metropolis algorithm.

which shows that there are two terms that restrain the

twist fluctuations; the total stiffness against the twists is

the sum of the stiffness of the system itself, and the
stiffness of the surrounding medium.

At general temperatures we make use of a similar
expression to define the internal stiffness Y [13], which

depends on temperature, lattice size, and p„

We may now consider the surrounding medium as being
made up of a huge number of L x L blocks, each with the
internal stiffness Y. It is then possible to show that p„
the combined effect of these blocks to resist the twists in

the system, is equal to the stiffness of a single block [12].
One therefore arrives at the self-consistent condition

(2)

which characterizes the self-consistent boundary condi-
tions (SCBC). The data in Fig. 2, obtained by means of
Eq. (2), show that this choice gives considerably reduced
finite-size effects; the jinite size effect is v-irtually elimi

nated. The data are for lattices with L = 8, 16, 32, and 64,
at T/J = 0.89. The same reduction of the finite-size ef-
fect holds for all temperatures below and closely above T, .

Instead of adjusting p, in the MC simulations to

precisely the correct value, the simulations were done
with two different p„close to the (unknown) self-

consistent value. The .aired data were obtained by
linear interpolation. As an example, 1/e, (k) in Fig. 2 is

from simulations with p, /J = 0.55 and 0.60. The self-

consistent values of p, for the different system sizes
were determined to be p/J = 0.6010, 0.5865, 0.5769, and

0.5761 for L = 8, 16, 32, and 64.
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0.70 TABLE I. Results from fitting MC data for I/e, (k), obtained

with SCBC, to Eqs. (3).
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FIG. 2. The dielectric function obtained with self-consistent
boundary conditions, Eq. (2), at T/1 = 0.89. The finite-size
effect is virtually eliminated.

Jm

2e, (8)T

Jm

2e, (Z) T

Jm
2e, (8)T

= 1 + ccoth[2c(8 + Zp)],

= I + [2(Z + 8p)] ',

= 1 —c cot[2c(Ep 8)],

T & T„(3a)

T —T~, (3b)

T )T„(3c)
where 4 is a logarithmic length scale, and c and Zo are
fitting parameters.

Figure 3 shows the result of fitting MC data for I/e, (k)
by Eqs. (3). The solid lines are I/e(Z), given by Eqs. (3).
The open circles are MC data at six different tempera-
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We now turn to a comparison between our self-
consistently obtained data for I/e, (k) and the behavior
prescribed by Kosterlitz's RG equations. From the RG
equations [2], the behavior of the length-dependent di-

electric constant I/e, (4) around the critical line is given

by [14]

tures. The fitting parameters are shown in Table I. The
thick line is for the critical trajectory, and the correspond-

ing MC data for the temperature T, /1 = 0.8922(2). The
lines above and below the thick line are for lower and

higher temperatures, respectively.
The fits are excellent down to wavelengths 2n/k = 7

but break down at smaller lengths. This is also expected
for two different reasons. First, the RG equations are only
reliable for small fugacities, which implies large length
scales. Second, the lattice structure has an effect on the
behavior of the XY model at small distances, which is not
included in the RG equations.

The actual fitting was done with five evenly spaced val-
ues of In(2m/k), corresponding to wavelengths 2m/k =
8, 16, 32, 64, and 128. To obtain best possible precision
in the fits, the MC data at several temperatures in a narrow
interval, 0.87 ~ T ~ 0.90, were first fitted by a second or-
der polynomial in r = T/J —0.89,

Jm 2

2e, (k)T
= &k + Pk& + 7'k& . (4)

The obtained parameters, which are shown in Table II,
were then employed to determine our values of I/e, (k) to
be used in the fits.

From the data in Table I it is possible to extract some
nonuniversal constants pertinent to the KT transition in

the 2D XY model. One such constant is the slope B in the
behavior of the characteristic length as T T,+ [2],

B
ln g = const + (5)

T/T, —I

With ln g =—4p for T o T, in Table I, this behavior is
obeyed to an excellent approximation with B = 1.585(9).

I I

16 32
2x/k, exp(E)

64
I

128
2m. /k

TABLE II. Parameters from fits by Eq. (4).

Pk

FIG. 3. Fitting of the self-consistently obtained I/e, (open
circles) to I/e, (C) from Eqs. (3) (solid lines) at six different
temperatures, T/J = 0.880, 0.885, 0.890, 0.89218, 0.895, and
0.900. The thick line corresponds to the critical trajectory and
Eq. (3b). The errors in the MC data are smaller than the size
of the symbols, cf. Table II.
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128

l.14844(15)
1.12637(17)
1.11005(19)
1.09853(22)
1.08941(25)

—3.04(2)
—3.38(2)
—3.79(3)
—4.23(3)
—4.57(4)
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FIG. 4. Size-dependence of the helicity modulus,
L = 8. . . 256 (determined with PBC), together with the
length dependence of the dielectric function (SCBC, L = 128)
at T = 0.89J. At large lengths these two quantities agree, but
at sizes L ~ 64 the difference becomes significant.

A detailed comparison with previous results will be given
elsewhere [12].

Several authors have performed the same kind of fits to
predictions from the Kosterlitz RG equations, with the size
dependence of the helicity modulus Y = J/e, (0) instead
of the length dependence of I/e„both for the critical
trajectory [3,4] and for some trajectories below T, [5].
The underlying assumption is that the size dependence
in Y directly reflects the length dependence in 1/e, . As
shown in Fig. 4, this is, however, not correct for the typical
lattice sizes used in these analyses. The figure shows a
comparison between these two quantities; the factor g =
1.70 is chosen to give agreement at large lengths.

The solid squares in Fig. 5 show the difference in Fig. 4
in more detail. With a proper adjustment of the factor

g, the difference vanishes algebraically, -L t7g. Also
shown is the approach to the thermodynamic limit of
1/e, (k = m. /4, L) with PBC, cf. Fig. 1.

In conclusion, we have generalized the periodic bound-

ary conditions to include fluctuations larger than the system
size and controlled the amplitude of these fluctuations in a
self-consistent way. With this idea applied to MC simu-

lations of the 2D XY model, the finite-size effect in the
dielectric function is virtually eliminated. The obtained
dielectric function is shown to be in excellent agreement
with results from Kosterlitz's RG equations; we specifi-
cally find T, /J = 0.8922(2). It is also shown that the size
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dependence of Y differs significantly from the length de-
pendence of 1/e(k) for most commonly used lattice sizes.
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