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Comment on "Application of Finite Size Scaling to
Monte Carlo Calculations"

In a recent Letter, Kim [1] claims to have uncovered
a new way of applying finite size scaling (FSS), which
eliminates the need for large lattices to investigate criti-
cal behavior; he then employs this technique to study the

O(3) model in two dimensions (2D) and concludes that
asymptotic scaling (AS) holds for P ~ 2.25, in disagree-
rnent with our prediction [2,3] that for P sufficiently large
the mass gap vanishes. We believe that this paper is based
on a misunderstanding of both FSS and of our reasons for
doubting the existence of AS in the O(3) model [4].

Kim's basic assumption seems to be that FSS can be
applied for any L. This is not correct; in fact, FSS says
that near a critical point quantities such as r = X(L)/X(~)
depend essentially only on the ratio x = L/g(~), instead
of L and P separately. But the statement is an asymptotic
one meaning that in the limit L ~ ~ at fixed x, r
approaches a finite limit. In particular, there is nothing
in this statement that says how close for a given L this r
is to its limiting value, which is clearly a model dependent
issue. Now Kim is not following this procedure. Instead
his x becomes smaller and smaller (in steps) as P
increases. This is so irrespective of whether the critical
point is at a finite P value or at P = ~. Consequently,
he is not studying really FSS, but the limit x ~ 0. On
his small lattices he is bound to recover the results of
perturbation theory (PT), as the numbers below show.

Our prediction of a vanishing mass gap at large

P necessarily will imply violations of FSS, because
for small L one will see an apparent FSS with

(the correlation length predicted by asymptotic scaling)
replacing the true correlation length, whereas on large
lattices one would see the true FSS involving the true
correlation length.

The next question is, how large an L one needs to
use for FSS to become reasonably accurate. In O(3), as
explained in [4], there are good reasons to believe that
the minimal L needed for observing truly thermodynamic
behavior is O(exp(n. P)); this scale is suggested by
PT itself. Indeed, for fixed L, PT is (demonstrably)

producing the correct asymptotic expansion. This is
quite understandable since PT is an expansion around an

ordered state, and in a finite ferromagnet, at sufficiently
low temperatures, such a state is sure to exist. The subtle

question is whether PT remains valid when L goes to ~,
since in 2D the Mermin-Wagner theorem guarantees the
restoration of the symmetry in the infinite volume limit.

The success of PT on small lattices is illustrated in
Table I, where we use the PT values of the 2-point
function [5] to calculate gr. and Xr. and compare with
Kim's Monte Carlo values. It is clear that in what Kim
calls "the scaling region" (P ) 2.25), the Monte Carlo
results are quite accurately reproduced by PT. So the only
thing Kim's data show is that for L sufficiently small, PT
works. In particular, they tell nothing about the absence
of a massless phase at low temperature, as predicted by
our percolation arguments [2,3]. To answer that question,
one could employ FSS techniques, but only on lattices
of size L » O(exp(mP)), where nonperturbative effects
would have a chance of manifesting themselves. Let us
emphasize that in [4] we have already explained that any
sort of FSS, such as the MCRG quoted by Kim, is bound
to show AS on sufficiently small lattices, since that is a
true property of PT, and the latter works in that regime.
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TABLE 1. Comparison of Kim's Monte Carlo data with perturbation theory (the numbers marked by an asterisk were given
incorrectly in [1]).

gi(MC) $1.(PT) gL(PT)/g xi.(MC) x~(PT) x.(PT)/x

5 x 10-'*
5 x 10-'*

x Ip 5g

X1P 5

2x106
2 x 1p-6
2x106

2.246 308 598 4
2.381 067 991 2
2.509085 359 2
2.628 499 188 8
2.706 998905 0
2.793 293 745 0
2.918347 080 0

30
66

140+
283

18
30
63

23.42(4)
51.61(8)

109.64(27)
222.05(57)

17.07(3)
28.49(5)
59.84(6)

23.43
51.16

107.56
215.53

17.02
28.37
59.40

0.391 x 10 4

0.388 x 10-4
0.384 x 10
0.381 x 10-4
0.189 x 10-'
0.189 x 10-'
0.189 x 10-'

432.(2)
1846.(2)
7441.(16)

27574.(68)
201.9(1)
524.6(2)

2110.9(1)

439.0
1865.0
7458.0

27409.0
203.0
527.3

2117.0

0.615 x 10 '
0.605 x 10-'
0.598 x 10-'
0.591 x 10
0.184 x 10 '

0.183 x 10
0.182 x 10 "
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