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Susceptibility of the Spin 1/2 Heisenberg Antiferromagnetic Chain
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Highly accurate results are presented for the susceptibility X(T) of the s = 1/2 Heisenberg
antiferromagnetic chain for all temperatures, using the Bethe ansatz and Beld theory methods.
After going through a rounded peak, y(T) approaches its asympotic zero-temperature value with
infinite slope.

PACS numbers: 75.10.Jm

In a pioneering work in 1964, Bonner and Fisher es-
timated numerically [1] the susceptibility y(T) for the
s = 1/2 Heisenberg antiferromagnetic chain, using chain
lengths of up to 11. The exact value at T = 0 was ob-
tained using the Bethe ansatz in Ref. [2] and more rig-
orously in Ref. [3]. Since that time, the Bonner-Fisher
curve has frequently been used by experimentalists to
determine the value of the exchange coupling J and to
determine whether or not a given material has sufficiently
small anisotropic exchange and interchain couplings to be
approximated by this model. Recently it has become pos-
sible to calculate this curve much more accurately, using
the Bethe ansatz [4]. This method easily gives very accu-
rate results for T not too small, but becomes increasingly
difficult as T ~ 0. On the other hand, an analytic for-
mula can be derived for y(T) at small T, from conformal
field theory methods. Perhaps surprisingly, this formula
predicts, due to the marginally irrelevant operator, that
the susceptibility has infinite slope at T = 0. Here we

present results for y(T) obtained using the Bethe ansatz
for T & 0.003J and compare them to the conformal field

theory prediction, obtaining excellent agreement. The
field theory prediction for the general x2:z model is also
given. Figure 1 shows the susceptibility obtained from

the Bethe ansatz and Fig. 2 compares this result to the
field theory prediction at low T. Note that, with decreas-
ing T, after passing through the maximum, g = 0.147/ J,
at T - 0.640824J, the slope of y starts to increase be-
low the inBection point at T = 0.087J, approaching oc
as T —+0.

The Heisenberg Hamiltonian is written

H= J) S, S„,.

The susceptibility per site is given by

The low energy effective field theory description [5] is

given by the k = 1 Wess-Zurnino-Witten (WZW) nonlin-

ear o model, or equivalently a free, massless boson. with
an effective "velocity of light" or spin-wave velocity:

U = vr J/2.

This value of v is determined from the slope of the dis-

persion relation obtained from the Bethe ansatz. The
uniform part of the spin density is given by the conserved
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FIG. 1. X(T) from the Bethe ansatz. y(0) is taken from
Ref. [2].

FIG. 2. Field theory [Eq. (14)] versus Bethe ansatz formu

las for y(T) at low temperature.
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current operators JI„JR for left and right movers:

S, = JL, (x,)+ JR(x;). (4)

In the WZW model JL, and J~ are uncorrelated and their
self-correlations are given by

gab
a bJ,(~, x)J,(0,0)),

(
. )„

gab

( R(r x)JR(0 0)) =
(

.
)

.

This result can be extended to Gnite temperature by a
conformal transformation. This simply replaces

vp . (v~~ix)vr
V7 + 'EX ~ sin

7r v
(6)

where P—:1/T.
The susceptibility in the WZW model is thus given by

p vp . &(vi+ ix)x)
dx —sin

t8~2 m g vP ) + sin
t

vp . ((vr —ix)vr)
vr ( v ) (7)

The integral can be done by the change of variables: u =
tan —and m = —i tan '„givingP vP ' formula to be valid. We may write this more compactly

as

2vr(1+ u2)
dBI 1

, (u+ iiv)z 27rv' (8) i/3
4n ln(Ta/T)

(12)

Note that the integral is independent of r or u as it should
be since the total spin is conserved. Plugging in the spin-
wave velocity, v = J7r/2, gives the zero-temperature sus-

ceptibility, y(0) = 1/J+2.
The fact that y(T) is independent of T in the WZW

model follows from scale invariance. To obtain the lead-
ing T dependence, we must perturb about the scale in-
variant fixed point Hamiltonian with the leading irrele-
vant operator. This perturbation is written

—8' v2
6'M = g JL, JR.

3

1 g+
27rv vi/3

' (10)

Again, the correction is naively temperature indepen-
dent, since g is dimensionless. However, this formula can
be improved by replacing g by g(T), the efFective renor-
malized coupling at temperature T. By integrating the
lowest order P function, g(T) is given by [7]

g(T) =
1+4~gi ln(Ti/T)/~3

Here gq is the value of the effective coupling at some
temperature Ti Both gi and g(.T) must be small for this

This term is marginally irrelevant for the coupling con-
stant, g ) 0. We wish to calculate the correction to g(T)
to first order in 6'H. Expanding e I *" ~ '*1 to first
order the correction to y involves four current operators.
Because of the fact that the left and right currents are
uncorrelated, this expression factorizes into a product of
two two-point Green's functions, one for left movers and
one for right movers. Using translational invariance, the
spatial integrals factorize into two independent integrals
of the form of Eq. (8), giving

for some temperature Ta. Note that the asympotic be-
havior at small T becomes independent of gi or Ta up
to a correction of O((lnT) ). We expect higher or-
der corrections to g(T) of O(g(T)~), O(g(T)s), etc. By
shifting Ta, we can eliminate the O((ln T) 2) part of the
O(g(T) ) correction. Thus we obtain the leading T de-
pendence of y:

(13)

This formula is universal in the sense that if we add ad-
ditional interactions to the Heisenberg Hamiltonian that
respect the SU(2) and translational symmetry and are
not suEciently large as to drive it into another phase,
then this formula applies for some values of v and Ta In.
particular, if we add an antiferromagnetic second nearest
neighbor interaction, J2, the value of the bare coupling,
gi, decreases and reaches zero at J2 = 0.24J. At this
point all logarithmic terms in y(T) vanish, correspond-
ing to To —+ oo and y(T) should be analytic near T = 0.
For larger J2 the system develops a gap and y(T) van-
ishes exponentially as T ~ 0. Equation (13) should be
valid for arbitrary half-integer spin Heisenberg antiferro-
magnets. For the ordinary s = 1/2 Heisenberg model,
v = Jm/2, giving

1
J~2y(T) = 1+

21n To T (14)

A good fit to the Bethe ansatz data is obtained with
To = 7.7J, as shown in Fig. 2. Equation (14) is valid to
within 2% for T & 0.1J. Similar formulas for the finite-
size dependent low energy states were obtained in Ref.
[7] with To/T replaced by L/La where L is the size of
the system. The role of infrared cutoE on the renormal-
ization of the coupling constant is played by either the
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length L or an effective thermal length v/T in the two
cases. Note that the Geld theory calculation of the sus-
ceptibility is done in the limit LT/v ~ oo whereas the
finite-size spectrum calculations are done in the opposite
limit LT/v —+ 0. In both cases the space —imaginary-time
surface is an infinite length cylinder of circumference v/T
or L, respectively. (We only expect the susceptibility to
be given correctly by a finite-size calculation, such as that
of Bonner and Fisher, down to temperatures T = v /L. )
By pushing all calculations to second order in g, predic-
tions could be made relating the various values of the
LII's for different energy levels and Tri Alt.ernatively, we

may use the deviation of y(T) and the energy levels from
their asymptotic values to define four different estimates
of the efFective coupling constant versus length. These
are shown in Fig. 3. The singlet and triplet excited state
estimates of the effective coupling, g(L), only converge
very slowly as g(L), as we expect since, in general, all
these quantities receive corrections at next order in g.
Surprisingly, the susceptibility and triplet estimates of g,
using the relationship L ~ v/T, appear to converge much
more rapidly as 1/L, suggesting the absence of correc-
tions to any finite order in g(L). (The ground state and
triplet estimates appear to converge rapidly to a small
nonzero difference. This remains a puzzling discrepancy
between conformal field theory and Bethe ansatz calcu-
lations. See Ref. [8] for further discussion. )

We now consider the general xxz model:

involving a free boson P. The zz component becomes

(lay'I' ay
'

4~ IvBt) Oz
I 16)

The other components of the interaction become

JL J& + Jz JR ~x cos v Sere.

with R & 1/~2vr. The other part then becomes

JI JR+ Jz Jz oc cos(2$/R).

This has scaling dimension

z = I/vrR' & 2

and is irrelevant. It is the leading irrelevant operator,
provided x & 4. A renormalization of the velocity also
occurs. The zero-temperature susceptibility gets rescaled
to [6]

X()
(2 R), (21)

The zz part is exactly marginal and has the eEect of
rescaling the boson [5]:

H = J) S,*S,*+, + S,"S,"+, + AS;S;+,j . (15)

For 6 ) 1, the Hamiltonian has a Neel ordered ground
state and a gap. Hence the susceptibility vanishes expo-
nentially at low T. For 6 ( 1, the system remains gap-
less. It is now convenient to use Abelian bosonization,

y(T) ~ + const x T( ~

v(2m. R)2 (22)

The first order contribution to the susceptibility from

cos(2$/R) vanishes. The second order contribution is

determined by a standard scaling argument, giving

0 045

C7)

O)
C

0 035
0
O
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Susceptibility

we find

(23)

Again this formula is universal in the sense that the two

parameters v and R determine all low energy features of
the model for R ( 1/~2vr. Increasing anisotropy leads

to decreasing R. Equation (22) should apply for arbi-

trary half-integer spin xxz antiferromagnets in the gap-
less phase, provided that I/mR ( 3. Otherwise, the
exponent is replaced by 2. For the s = 1/2 Heisenberg
model R(A) and v(A) have been determined from the
Bethe ansatz [5,9—ll]. Letting

'~ x„X~
X

0 015
10 100

Length

I"IG. 3. Estimates of the effective coupling from lowest
order perturbation theory correction to finite-size energy of
ground state, first excited triplet state, first excited singlet
state [7], and to susceptibility, using L ~ v/T The renor-.
malization group prediction of Eq. (12) is also shown.

/ 8
v 2~R(6) =

g 1 ——.
Jar sin 8

28

6I

X(0 =
w(m —8) sin 8

(24)

(25)
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(in agreement with the explicit Bethe ansatz calculation

[3]) and the exponent is given by

Frontier in Condensed Matter Research" (Area No. 217)
and "Molecular Magnetism" (Area No. 228), from the
Ministry of Education, Science and Culture, Japan.

2/zR —4 = (26)

For small anisotropy,

4/2(I —6)
(27)

y(T) has an infinite slope at T = 0 for 6 ) cos ~ (z /5)—
0.809. For 6 ( 0.5, the exponent (2z /R2 —4) is replaced
by 2.

These results may prove useful in experimental studies
of quasi-one-dimensional antiferromagnets. In particular,
we may define a "critical region" where the temperature
dependence is governed by the leading irrelevant operator
so that Eq. (13) or Eq. (22) holds. For the isotropic
Heisenberg model, this critical region can be identified
approximately as T ( 0.1J, below the inflection point.
Only if the Neel temperature, determined by interchain
couplings, is below this value can the one-dimensional
critical behavior be observed.
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