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Topological Effects of Knots in Polymers
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We present a phenomenological theory of the static and dynamic effects of knots in polymers.
The theory is tested by Monte Carlo simulations using the kink-jump-crankshaft and Berg-Foerster-
Aragao de Carvalho-Caracciolo-Froehlich algorithms. A long time relaxation mode is discovered in the
dynamics of knotted polymers that is not predicted by the Rouse model. This mode is not present in
the trivial knot and appears to be the result of purely topological interactions.

PACS numbers: 83.10.Nn, 02.40.—k, 87.10.+e

The first scientific approach to the study of knots began
in the 19th century with the efforts of Kelvin and Tait [1].
Mathematicians have made much progress understanding
knots in a topological framework in the 20th century,
and deep connections between statistical mechanics and
knot topological invariants have recently been discovered
[2]. Experimentally, chemical knots remained a curiosity
until the work of Wang [3], Wasserman and Cozzarelli
[4], and others in elucidating the role of topology in
the life processes of DNA. With the advent of powerful
numerical techniques, physicists have made inroads toward
answering some basic theoretical questions about knots,
such as discovering the probability that a polymer is
knotted [5] and the distribution of random knots [6].
However, the effects of a fixed knot type on the static and
dynamic properties of a particular polymer are less well
understood [7,8].

The topological effects of fixed knots in single polymers
have important ramifications in biology, where the topol-
ogy of DNA is nonrandom and plays a crucial role in life
processes; there are enzymes whose function is to system-
atically change the knot type of circular DNA [9]. The
experimental study of knotted DNA is mature [4], and it is
well established that the mobility of a knot depends on the
knot type. However, this purely experimental observation
has not been explained except to hypothesize that topo-
logical constraints reduce the radius of gyration of knotted
polymers, leading to a higher mobility [4]. Topological ef-
fects have come into play in other areas of polymer physics,
but rigorous progress has been difficult, and the most suc-
cessful theories make ad hoc assumptions about the role
of topology. One of the most famous such theories is the
Edwards —de Gennes reptation tube model [10].

Although there are connections between knot invariants
and various models in statistical mechanics, knot invari-
ants are algebraic quantities and are difficult to treat with
the tools of analysis. In this Letter, we follow the ex-
ample of Edwards and de Gennes and develop a crude
phenomenological model of the effects of knot com-
plexity on the static and dynamic properties of knots. The
reptation tube model is successful because it relates topo-

logical effects to geometry, making the problem tractable
to analysis. We use that philosophy, and our model tries
to relate topological constraints to geometric constraints.
The model predicts the scaling law behavior of the ra-
dius of gyration and relaxation time of polymers as a
function of knot complexity. We tested the theory with
Monte Carlo simulations and report the first systematic
investigation of knot size as a function of knot com-
plexity. We also simulated the dynamics of a fixed length
polymer to study the relationship between topology and
relaxation time.

One measure of knot complexity is the minimum
number of self-crossings the knot has when projected into
a plane. This is clearly a topological invariant, albeit
a weak one (it does not distinguish very well between
knot types; there are 166 knots with 10 crossings). It
also forms the basis for a system of classifying knots:
the standard notation for uniquely identifying a knot is
C~, where C is the number of crossings and EC is an
index to a particular knot [11]. We have chosen this as
the starting point of our theory since the mobility assay
for DNA differentiates based on the number of crossings:
Knots with the same number of crossings have the same
mobility [4].

By studying an easy knot such as the trefoil 3
&

(Fig. 1), with a small leap of the imagination one sees
that it is effectively made up of three interlocking loops.
The "local" structure is a loop encircling a free strand.
When the knot is projected onto a plane, the free
strand topological constraint gets mapped to an essential
crossing. Our idealized picture of a knot is then as a

FIG. 1. The trefoil 31.
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set of interlocked loops, where the number of loops is
determined by the number of essential crossings.

A knot of length N and C essential crossings is
considered as C loops, each of length N/C. Each loop
then has radius of gyration Rg ~„~ ~ (N/C)' and volume

V~„~ ~ Rg ~„~ ~ (N/C)3'. Excluded volume effects will
cause a mutual repulsion, and the minimum energy
configuration will balance the repulsive force with the
attractive force of the loop linkage. Since the loops are
free to slide along each other, they have the ability to
distribute themselves in space. The total volume will
then be proportional to the sum of the individual volumes
where the coefficient will have to take into account some
degree of overlap between the loops:

R V'~ N'C'~ ' = N3~ Cg (2)

where in the last step we used the Flory value v = 3/5 in
three dimensions. The radius of gyration depends weakly
upon the complexity; it does decrease, as one expects
from the experimental mobility evidence. Additionally,
independent of the knot complexity, we have retained the
fundamental scaling law of polymers that Rg ~ N'.

One can also calculate the effects of a knot on the
dynamic relaxation of a polymer. The Rouse model
describes polymer relaxation in the absence of hy-
drodynamic interactions between monomers, and a
heuristic derivation of the relaxation time [12] can be
modified for our purposes. The argument uses the idea
that the fundamental relaxation time is a long distance
rotational relaxation time and is determined when the
center of mass of the polymer has moved a distance on
order of the radius of gyration. This is interpreted in

terms of local monomer solvent interactions: Each such
interaction changes the center of mass by a factor of 1/¹
Since these interactions are not coherent, they add up as a
random walk. Since they are happening simultaneously,
in the relaxation time ~ there are 7.N such displacements.
Then we have

2

~N R (N C"' ')
EN 8 (3)

and

N2v+ 1 C2/3 —2v N2, C
—().53

The algorithm of Berg, Foerster, Aragao de Carvalho,
Caracciolo, and Froehlich (BFACF) [7,13] is useful for
studying the static behavior of knots and has been shown
to be ergodic within a fixed knot type [14]. For dynamic
behavior, the Verdier-Stockmayer kink-jump algorithm
combined with a crankshaft motion (KJC) [12] better
imitates the local motion of polymers since it is length
preserving. Although KJC is in principle nonergodic [15],

V ~ CVi„p ~ C(N/C) ' = N 'C' " . (1)
But the volume must go as the cube of the radius of
gyration of the knot:

the effects of the nonergodicity appear to be small [8,12j.
Both BFACF and KJC were implemented in a fast lattice
algorithm [8]. We iterated 10 BFACF attempts per
knot after thermalization for static quantities, while for
dynamic quantities we iterated 10 KJC attempts per knot
after thermalization.

To test the proposed scaling laws (2) and (4), v e
investigated the dependence of knot size on complexity.
Figure 2 shows the radii of gyration for knots of lengths
100 and 400. We exhaustively computed all knots up to
and including 8]. Three representatives with 8 crossings
and six representatives with 10 crossings were arbitrarily
chosen to get data on knots with higher numbers of'

crossings. As the number of knots is increasing rapidly
with the number of crossings, it is not practical to make
a comprehensive study. The data were fitted by a po~er
law, and the fitted exponents of —0.235 (N = 100) and
—0.23 (N = 400) are in agreement and close the value of
—4/15 = —0.27 predicted by Eq. (2).

We measured the dynamic relaxation time in KJC by
computing the time correlation function of the radius
of gyration (Rg (t)Rg (0)) —(R"",). For the trivial knot
("unknot"), the relaxation time as a function of length
(N = 64—256) scaled with an exponent of 2.27(.06), in
excellent agreement with the Rouse mode1. However, a
surprising result happened when we measured the relaxa-
tion of more complicated knots: We found a family of re-
laxation curves, all with an initial relaxation similar to the
unknot, but with a new long time mode (Figs. 3 and 4).
This is entirely unexpected; Eq. (4) predicts only a small
shift in the relaxation time.

To study the new mode quantitatively. we fit the
relaxations by the sum of two exponentials, with

cC 8
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Number of Essential Crossings (C)

FIG. 2. Scaling of radius of gyration with knot complexity for
knots of length N = 100 (lower points and line) and N = 400
(upper points and line). The unknot has been moved to C = 1,
since C = 0 is singular.
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relaxation time were derived. The theory was tested

against computer simulations and agreed well for the ra-

dius of gyration. We discovered a new long time mode

in the dynamic relaxation that appears to be purely topo-

logical in nature. Rouse scaling of the entire relaxation

function appears to hold, and scaling of the nontopologi-
cal relaxation time as a function of knot complexity is

in reasonable agreement with Eq. (4). There is evidence

from dynamic light scattering experiments that topologi-
cal constraints in reptating polymer networks also cause a

slow relaxation mode [16]. The results of this Letter sup-

port that claim, and it is possible that a knotted polymer

undergoes "self-reptating" behavior due to its own topo-

logical constraints.
There are many further questions that can be addressed

with these techniques. One could use the present results

to calculate knot mobility and compare it to experimental

gel electrophoresis data. The average radius of gyration

can be explored as a new knot invariant. Finally, there

are questions about the effects of knots on polymer

elasticity which the KJC simulation could be modified to

address.

FIG. 6. Relaxation functions of the knot 3, (lengths N =
64, 96, 128, 192, 256) that have been data collapsed on top of
each other. Inset: The rescaled time parameter on a log-log
plot.
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