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General Formulation of Laplacian Transfer Across Irregular Surfaces
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(Received 2 May 1994)

We describe a simple way to study the response of an irregular resistive interface to a Laplacian field.
Using this method, one can find the response of an arbitrary electrochemical electrode from its geometry
alone. The same method applies to the study of the steady-state transfer across irregular membranes
with finite permeability.

PACS numbers: 82.45.+z, 05.40.+j, 64.60.Ak, 82.20.%t
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In this Letter I present a new way to consider and to
compute the impedance of irregular interfaces using a
simple and general argument. It applies to any irregular
electrode and, in particular, to self-similar electrodes. In
addition, it permits us to compute the response from the
geometry of the interface only.

The idea is to substitute the problem of Laplacian
transfer across a real electrode (which presents a finite
transfer rate), by a problem of Laplacian field obeying
the Dirichlet boundary condition (V = 0) but with a
different geometry obtained by coarse graining. The
coarse-graining scale is directly related to the transport
coefficients of both the electrolyte and the electrode.
Using the general properties of Dirichlet-Laplace fields,
one finds an effective screening factor which gives the
size of the zone which is really active on the initial
geometry and, hence, its admittance.

To calculate the response of an electrochemical cell with
an irregular electrode, as in Fig. 1, one has to solve the
Laplace equation (b, V = 0) which governs the potential

distribution in the bulk of the electrolyte with a boundary
condition that reAects the electrochemical process at the
working surface. This surface possesses a finite admit-
tance, and what is known about the properties of Laplacian
fields on surfaces without impedance (with V = 0) cannot
be applied directly. This is unfortunate since the Dirichlet-
Laplace problem on an irregular electrode has been
thoroughly studied, at least in d = 2. More specifically,
an important theorem, Makarov's theorem, describing
the properties of the charge distribution on an irregular
(possibly fractal) electrode capacitor can be used [1].
This theorem states that the information dimension of the
harmonic measure (for instance the electrostatic charge
for the capacitor case) on a singly connected object in

d = 2 is exactly equal to 1. This very special property
of the Laplacian field can be illustrated in the following
manner: Whatever the shape of an electrode capacitor,
the size of the region where the charge accumulates is
proportional to the overall size (or diameter) L of the
electrode under a dilation transformation.

This result generalizes to arbitrary geometry, a fact
which has been known for a long time for simple geome-
tries. It has a simple but profound meaning in terms of'

the screening efficiency of the geometrical irregularity, and
this is what we wish to illustrate and use. For this, we con-
sider the simplest description of an irregular surface: the
ratio of the length of the perimeter L„divided by its size
or diameter L [2].
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FIG. l. Electrochemical cell with a self-similar electrode.
The irregular electrode of interest (the working electrode in
electrochemistry) has an inner cutoff l and a size or diameter L
The arrow indicates the orientation of the normal. This Letter
deals with the electrochemical problem in which the applied
voltage is Vo on the planar counter electrode and 0 on the
working electrode. There exists an exactly equivalent diffusion
problem in which a planar source of diffusion is maintained
at a constant concentration co and particles diffuse towards an
irregular membrane with finite permeability W.

This number 5 has a direct physical significance: it really
measures the screening efficiency of the irregularity of the
structure for Dirichlet Laplacian fields. If, whatever the

geometry, the active zone has a size L, then as

L = LI, y'5.

the factor 1/5 can be considered to be the "screening
efficiency' due to the geometrical irregularity. This is the

physical significance of Makarov's theorem. Note that
when we discuss fractal lines we consider only physical
objects with a finite inner cutoff 4 so that 5 is always finite.

The above result cannot be applied directly to the

screening of the current in an electrochemical cell, be-
cause the boundary condition on the electrode is not
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V = 0. In the simplest linear regime, a "flat" element of
an electrode surface with unit area behaves as a resistor r
across a capacitance y. The Faraday resistor r describes
the finite rate of the electrochemical reaction, and y de-
scribes the charge accumulation at the interface. (For a re-
view of the early works on fractal electrodes see Refs. [3]
and [4] and the references therein. ) Because of charge
conservation, the current j& = V—(r ' + jycu) crossing
the electrode surface must be equal to the Ohmic current

j~ = —%~V/p reaching it from the bulk (p being the
electrolyte resistivity). As a consequence, the dc bound-

ary condition can be written as

V/V&V = A with A = r/p. (3)
The real boundary condition then introduces a physical
length scale A in the problem. The procedure that we
describe now is to switch from the real geometry obeying
the real boundary condition to a coarse-grained geometry
obeying the Dirichlet boundary condition, with the coarse-
graining depending on A. In that new geometry we will

apply Eq. (2) to obtain the effective screening, hence, the
size of the working zone of the real electrode.

To be more specific, we describe this analysis for
the situation of an electrode in a planar d = 2 cell, as
represented in Fig. 1. Consider a part i of the surface
with a perimeter length L„;. If the thickness of the cell
is b, this surface possesses an admittance Y; = bL~, /r.
The admittance to access the surface is of order Y„, =
b/p, because in d = 2 the admittance of a square of
electrolyte with thickness b is equal to b/p, whatever
its size. Depending on the size of the region i, there
exists two situations: Y; ( Y„, or Y; & Y„,. If L„; is
small, Y; & Y„, and the current is limited by the surface
admittance. On the contrary, if L„; is large enough, we
have Y; & Y„„and the current is limited by the resistance
to access the surface. But in the latter situation we are, in
a first approximation, back to the case of a pure Laplacian
field with the boundary condition V = 0. The idea then is
to coarse grain the real geometry to a scale L; = L g such
that the perimeter L~,s in a region of size (diameter) L,s
is given by the critical condition Y; = Y„, or

Lp, cg (4)
A coarse-grained site is then a region of perimeter equal

to A = r/p Because of .its definition, such a region can
be considered as acting uniformly. At the same time, in
the new coarse-grained geometry we are dealing with a
pure Dirichlet Laplacian field, and we can then use the
screening factor 1/S, s of this object to find its effective
active surface. Note that if we performed the coarse
graining to a scale larger than L g it would no longer
be correct to consider a uniform distribution of the current
within a macrosite and that consequently we would not be
able to find the size of the active zone. Calling N~ the
number of yardsticks of length L g needed to measure the
perimeter of the electrode, the number S of the coarse-
grained object is simply

S,s = Np/N, (5)

where N = L/L, s is the number of yardsticks needed
to measure the size (or diameter) of the electrode. The
quantity 1/S, s is the effective fraction of the surface
which is active, and the admittance of the electrode will

simply be given by

Y() = Y„()/S.. (6)

Y = Nb/p. (9)

We then obtain that the modulus of the admittance of
an irregular electrode in d = 2 is simply the square
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where Y~ (r) would be the surface admittance of a
"stretched" electrode with a length L„. In this frame
the number S g of the coarse-grained object determines
directly how the admittance of the total surface is reduced
by the screening effects. If we consider a self-similar
electrode with an inner cutoff 8 and a fractal dimension

Df, there exists a simple relation between the size L g of
the coarse graining and the length of the perimeter:

A = E(L,s/8) I

Using Eqs. (5)—(7), one obtains for the admittance of a
self-similar electrode of macroscopic size L and thickness
b the value Y = Lb(lp)~' f f r '/ f To obtain the
general ac response we substitute r by (r ' + jycu)
For blocking electrodes with r ' = 0 we have

Y(~) Lb(gp)(1 Df)/Df (j y~—) I/Df (g)

The dc form of this result has been verified by numerical
simulation and the ac form (the so-called constant phase
angle response) has been verified by experiments on model
electrodes as described in detail in Ref. [5].

However, this simple argument is more general and
permits us, as we show below, to compute the response of
irregular electrodes even for nonscaling geometries. First,
we show how this method can be used from the image
of the electrode. All we need is to have a "flexible"
measuring rod of length A = r/p [or )A(ar)[ = 1/pyre
for blocking electrodes] that we use to measure the length
of the perimeter from one end to the other. To perform
this task we need a number N„of flexible rods. Note
that here we do not measure the irregular object with
a rigid yardstick as is usually considered in measuring
fractals. On the contrary, starting at one end of the
irregular object, we map the object with the flexible rod
of length A, and the distance in real space between the
ends of this rod determines a distance L~. This length
is a "local yardstick" associated with A and the local
geometry. Then we place a second flexible rod of length
A from the end of the first rod and find a new yardstick
length L2, and so on. The total number of rods (of length
A) needed to map the object is N„, and the number S
of the coarse-grained electrode is N~/N, where N is the
number of yardsticks which measures the size. The real
electrode has a perimeter N„A and a total admittance
Y„(r) = N~Ab/r = N~b/p. Dividing by S, as in Eq. (6),
we find
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admittance b/p multiplied by the number of yardsticks
to measure the size (or diameter) L of the electrode. This
shows that deterministic and random fractals with same
inner and outer cutoffs and the same fractal dimension
have the same response. The reason is now trivial,
because what really matters is the total number of
macrosites, whatever their individual size, which may be
distributed over some range of sizes.

We now apply this method to nonscaling geometries
as shown in Fig. 2. The dc admittance of the perimeter
surface is now Y~ = (N„' + N")bA/r with N' = L'/L,'

and N„" = (L"/L," )o&. To obtain the admittance of this
electrode we have to divide this value by 5 of the entire
electrode. The macrosites do not have the same size if
they correspond to the planar part, for which the yard-
stick is simply L,'.„=A, or if they correspond to the
fractal part for which the yardstick is given by I,".

„,
=

Z(A/8)'ID& from Eq. (7). The total number of yardsticks
on the object is now Np Np + Np whereas the number
of yardsticks to measure the size is N = N' + N" with
N' = L'/L,' and N" = L"/L," . Applying Eq. (6) to S =
(N' + N")/(N' + N"), one finds for the admittance I' =
(N' + N")t /I or I = I'b/r + L"b(eI )"
This is the sum of the admittances of the two electrodes
in parallel. Our general argument then makes restitution
of the essential property of Laplacian transfer: The ad-
mittance of two electrode in parallel is the sum of the
individual admittances. This indicates that this method is
general. The ac response of blocking electrodes is ob-
tained by replacing r by (jyto) '. Note that we have
used the number W of yardsticks to measure the total size
as equal to the sum N' + N" of the number of yardsticks
and to measure the sizes of the two different parts. If
we wish to use Eq. (5), we have to use an average yard-
stick (L,s) defined by L/(L, s) = L'/L', + L"/L',.' . The
average yardstick (L,s) must be obtained by this harmonic
mean.

In the known cases of self-affine electrodes like the
Cantor bar electrode of [6] or the Sierpinski electrode of
[7], the pores have different aspect ratios. For this case a
coarse-grained pore can still be defined by Y, = Y„.„.but
not by I.p, g

= A. As explained in a somewhat different
language in [4,7], the impedance can be found from the
total surface of these coarse-grained pores which are a11

accessible at the same time due to the particular geometry.

FIG. 2. Example of an electrode with a nonscaling geometry.
This electrode is built by the association of a planar electrode
of length L', with a self-similar electrode of length I".
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In conclusion, we have given a simple and general
method to find the response of irregular electrodes in

the linear response regime from their geometry alone.
In particular, we have shown for one example how to
find, from first principles, the response of a nonscal-
ing irregular object. Apart from the image, all that
is needed are the values of the microscopic transport
coefficients (here for instance the electrolyte resistivity
and the Faraday resistance). The same method applies
to the equivalent problem of the steady-state diffusion
rate towards an irregular membrane with finite perme-
ability 5' as indicated in Fig. 1. Here the variable is
the concentration c instead of the electric potential V.
The concentration obeys the steady-state diffusion equa-
tion Ac = 0. The Aux in the bulk is given by Fick's
law 4 == —DV'c, where D is the diffusion coefficient,
in exact analogy with Ohrn's law, and the Aux cross-
ing the membrane is 4 = —TVi also in exact analogy
with the effect of the Faraday resistance on the current
at the surface. As a consequence, there is a steady-state
diffusion admittance whose value for a membrane with
the geometry of Fig. 2 is given by Eq. (8), provided that
we replace p by D ' and jyco by W [8]. In the diffusion
case, the value of A is A =- D/W, and a coarse-grained
site has the size of the region where a random walker is

really absorbed due to the finite permeability.
The simplicity of this method probably makes it a

good candidate for the study of the response of irregular
electrodes in the nonlinear regime, where the local current
across the electrode is related to the local voltage by a
nonlinear relation j = f(V). In the same spirit, it could
probably be applied to the study of active transfer across
irregular membranes or to multiparticle heterogeneous
catalysis.
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