
VOLUME 73, NUMBER 24 PH YS ICAL REVIEW LETTERS 12 DEcEMsER 1994

Interacting Electron Theory of Coherent Nonlinear Response
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A theory of the nonlinear susceptibility for a two-band semiconductor model is given as a
perturbation series in the external oscillating electric field and in the carrier interaction. Diagrammatic
representation makes clear both the structure of subsets of the perturbation series for resummation
and the corresponding physical processes. The theory, applied to four-wave mixing in quantum wells,
provides a unified basis for understanding a wide range of observed phenomena.

PACS numbers: 78.47.+p, 42.50.Md, 71.35.+z„78.66.—w

A number of four-wave mixing (FWM) experiments
[1,2] have shown that there are effects of the many-body
interaction on the nonlinear optical process which cannot
be explained by only the excitons in a two-level-system
model [3]. Some of the observed interaction effects have
been explained in terms of the self-energy and local-
field corrections [4,5]. For phenomena which involve
polarization dependence [6—8], the recently proposed
explanations [9—11] invoke the existence of a biexciton
state. In this Letter, we present a brief, physical account
of a unified theory of the nonlinear response, from
which a11 such effects as the local-field effects and
biexcitons can be derived. Thus, the theory provides
the first-principles origin of these interaction effects,
including the parameters which govern their behavior
as well as a physical picture of what the effects are,
thereby giving a perspective of their relationship. This
single theory is used to provide an explanation for
all the diverse observations in FWM, including the
rise of the FWM signal for negative delay time, the
difference between copolarization and cross polarization,
and quantum beatings of the photon echo.

Such a theory is possible because it is a perturbation
theory of the induced polarization to a given order of the
electric field of the light wave (e.g. , the third-order sus-
ceptibility g3 for FWM). This provides a limitation on the
possible ways in which the interaction enters. This was
first exploited by Axt and Stahl [12]by an equation of mo-
tion method of the density matrices to factorize the n-point
density matrices to a required order of the electric field
and, thus, to decouple the equations of motion exactly to
that order of the electric field. We have developed a dia-
grammatic method of the perturbation series in the electric
field and in the interaction effects. We take the opposite
tack of starting with the noninteracting susceptibility of a
given order in the electric field and then decorate the dia-
gram with interaction lines. The diagrams make it trans-
parent what interaction processes are present to a given
order of the electric field. In g3 for FWM, the diagram
shows two incoming excitons and two outgoing ones.
From the possible interaction diagrams of the two excitons,
we can easily discern the local-field effect, the biexciton,
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FIG. 1. Diagrammatic representation for the g3 processes.
For explanation, see text.

and the two excitons with different spins producing polar-
ization effects.

Figure 1(a) shows the third-order susceptibility g3 as a
four-point vertex diagram. With the time axis pointing
vertically up, the diagram represents the mixing of waves
of wave vector k], kz, and k3 to yield a signal at kf =
—k] + k2 + k3. In the two-pulse FWM, k2 and k3 are
taken to be from the same wave. In that case, the delay
time T is the time between the two external pulses k2
and k).

To simplify the description of the near-resonant exci-
tation in a semiconductor quantum well, we consider a
two-band model with a ground state of an empty conduc-
tion subband and a full valence subband. A conduction

1electron carries a wave vector k and spin o. = +
z and a

3
heavy valence hole wave vector —k and spin I = ~ 2.
The perturbation term of the Hamiltonian includes the
interaction with the laser s electric field 8', with circular
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polarization s = ~1, associated with the dipole moment

p, , permitting the vertical transition conserving angular
momentum s = m + 0.. The perturbation also contains
the Coulomb interaction between two carriers, conduction
electron or valence hole [4]. Neglected are the exchange
interaction [13] between an electron and a hole and the
interband excitation of an electron-hole pair. The effect
of the latter is included by the dielectric constant in the
Coulomb interaction.

The simplest diagram for g3 is one without any
Coulomb interaction [Fig. 1(b)], showing a loop with
the solid segment representing a conduction electron
propagator and the broken line a valence hole, with the
time axis vertically up. The energy conservation of a
wave exciting an electron-hole pair, or the reverse, at
each vertex gives the "rotating-wave approximation" [14].
The angular momentum conservation at each vertex yields
the polarization dependence of the light wave. Diagram
rules, similar to those in the field theory, will be given in
a longer paper. Evaluation of this diagram corresponds
exactly to the expression given by Ref. [3]. Since a loop
with a reversed time order of 8i and 82 would violate
the exclusion principle, no negative time-delay signal is
predicted for a noninteracting system [3].

To include the Coulomb interaction in the suscepti-
bility, we decorate the four-point vertex with horizon-
tal dotted Coulomb interaction lines with the following
rules: (1) An electron or hole line may create in the de-
creasing time direction a pair of lines of the same band
with arrows in opposite time directions and (2) two paral-
lel lines may be joined by an interaction line only if their
arrows point in the same direction.

An interaction line across each vertex forms the first
term of a ladder sum of repeated attraction between a
hole and an electron propagating in the same direction,
as shown in Fig. 1(c), which includes the local-field ef-
fect [4,5]. Summation of these ladders produces ex-
citon binding. Thus, the most basic process in FWM
is the production of two excitons which, without fur-
ther interaction, change their partners to produce two
new excitons.

The remaining possibilities of decorating Fig. 1(b) with
one Coulomb line is to join the two electron or hole
lines on opposite sides, as shown by Fig. 1(d). For
clarity, we have not drawn the lines across each vertex
for the excitons. This first-order interaction between
two excitons coincides with the so-called self-energy
correction [4,5]. It is also evident that the time order of
the two pulses Ci and Z2 can now be reversed in Figs. 1(c)
and 1(d) and in the rest of the terms involving interaction.

By rule (2), the interaction lines joining two excitons
propagating in the same time direction, such as those
produced by E2 and C3, can cause the two excitons to
form a biexciton. By the same rule, there is no interaction
between the biexciton and the exciton line going in the
opposite time direction.

The FWM diagram, Fig. 1(a), shows four external field
lines, two going in and two out. Since, by energy
conservation, each closed fermion loop must contain an

equal number of ingress and egress lines, the maximum
possible number of loops for a four-vertex diagram is
two. Figures 1(e) and 1(f) are two examples of one-loop
and two-loop terms of the same order in interaction. In a
single loop, from the angular momentum conservation, all
the four electric field lines must be of the same circular
polarization s, all the electron and hole lines must have
the same cr and m with s = o. + m. On the other hand,
in the two-loop diagram, the polarization in one loop may
be the same as or different from the other loop. To first
order in the interaction, only one loop is possible, leading
to interaction between two excitons of the same spin.
The first-order interaction connecting two loops would
have zero momentum, leading to a zero interaction matrix
element. Thus, the local-field effect alone contains no
polarization mixing. To second and higher orders in the
interaction, the interaction between two excitons of the
same spin comes from both one- and two-loop diagrams,
whereas the interaction between two excitons of opposite
spins comes only from two-loop diagrams. In a two-pulse
FWM experiment, the third-order polarization has circular
components of the form

P = g iZ'i i82 182,(3)

where the third-order susceptibility g++ is the sum of all
one-loop and two-loop diagrams with s = 1 polarizations,
and g+ the sum of two-loop diagrams only with two
pairs of opposite polarizations. If the electric fields are
linearly polarized with 8& at an angle p to E2 along the x
direction, then

x (X++ + X+—)~182 cos q,
P,' = (X++ —x+-)~i~2 sin 'P.(3) (2)

The existence of the two-loop diagrams is necessary for
the polarizationdifference which has been observed [6,11].

The net result of the diagrammatic analysis is that the
four-point vertex function can be expressed in terms of
the exciton and the biexciton. To obtain an approximate
expression for the FWM signal in the coherent limit
[12], exciton and biexciton states are assumed to have
been evaluated, and a phenomenological relaxation time is
added to each exciton (y2) or biexciton (y2") propagator.
Then, approximately,

X„=(X, + 1'„)6„+1'„. (3)

The one-exciton contribution is given by

X, = age " '"' ' 8(T)0(t —T)P, , (4)
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where ~ = i—) @~4/h', v, is the exciton energy difference from the light frequency, and t)tt, the exciton wave function
at zero relative distance. The biexciton contribution is given by

SCl,S Cl'

y g @
—y,"t iv,—(t 2T—) T [P'(T)()(t T) i(v' v* )T(1 (ih;t yt')—(t T))—

1

o. a'A + &y2
sas a

p( T)p(t)e [i(2v, —n„'a) yr 1T(1 e(itt;„—y2 )t)] (5)
I I

where hh'„z is the binding energy of the biexciton in state ss A, and hB„&is the difference between the biexciton
energy and the two-photon transition energy. The transition matrix element connecting the biexciton state ss A to two

I I

excitons sa and s'a' and to the 82 photons times i)t, is denoted by T,', t,

Consider the case where the biexciton binding b, is much stronger than the biexciton dephasing rate y2". We further
confine the exciton to a single state. Then the third-order susceptibilities reduce to

X = Ke y& t iv~(—t 2T)$—2Q~(T)p~(t T) 6

1'„= yt' '"*' ' 'y y O~(T)O~(t —T) 1 —/~M„(A)~' '~"" y'"

(7)

where M„represents the simplified exciton-biexciton tran-
sition matrix. Equation (7) is similar to the result derived
from a multilevel system including a biexciton [9].

This limit of large 5 corresponds to the case where
the biexciton state is important for the nonlinear opti-
cal process as observed in several recent experiments
[9,10,15]. In particular, Wang et al. [11]have measured
a biexciton binding energy of 1.2 meV (or b, = 1.8 ps ')
and a corresponding dephasing rate of y2' ——0.5 ps ',
within the limit discussed here. In the opposite, weak
biexciton binding limit, where 5 « y2", Eq. (3) reduces
to the one derived by Wegener et al. [5] using the
Hartree-Fock (HF) modified semiconductor Bloch equa-
tions (SBE) with the local-field effects.

In two-pulse FWM experiments performed with lin-

early polarized light [1,6,7], the self-diffracted signal is
observed to be much stronger in copolarization than in
cross polarization [7,8]. The HF solution of the SBE is
unable to explain such an effect but Eq. (3) can, as can
a multilevel model including a biexciton [9,10], which
is equivalent to a further approximation to Eq. (7) that
two excitons with parallel spins have negligible binding
energy (i.e., 5 = 0 for s = s'), retaining only biexcitons
with antiparallel-spin excitons. The result for T & 0 is

x ( ) ~ —yttp(t T)
cos '(t

Py (t) sin qr
e

—i v(t —2T)

—(Mss (', '"'-('"+»")('- ) . (8)

Since ~Mss~ ( 1, the copolarized excitation (p = 0) is
stronger than the cross-polarized excitation (p = m/2).

Another important observation is the photon-echo be-
havior of the copolarized signal, in contrast to the sim-

ple decay exhibited by the cross-polarized one [1,6]. For

inhomogeneously broadened systems, the total polariza-
tion is given as a sum over distributions of excitonic
detuning energy v and biexcitonic detuning energy A.
The first term in Eq. (8), when integrated over the de-
tunings, gives rise to a photon echo at t = 2T. The
second term appears as a product of distributions cen-
tered at t = 0 (due to the integration over t ) and t = T
(due to 0). Therefore, this result shows that only the
copolarized signal (p = 0) can exhibit a photon echo.
The cross-polarized signal shows a more complicated
decay than that described by y2 [3]. In a nonmag-
netic system, if the difference due to phase space fill-

ing is unimportant, the two-loop contributions of g++
and X+ cancel in P(3) of Eq. (2), which is then domi-
nated by the parallel-spin biexciton. This would contra-
dict the antiparallel-spin biexciton model [9,10] in which,
as in Eq. (8), P(3) is determined by the antiparallel-spin
biexciton.

Recent FWM measurements in a quantum well [16]
have shown that the excitation of two inhomogeneously
broadened exciton transitions of different energies leads
to a photon echo with quantum beatings. The cause was
inferred to be the coupling of two excitons in islands of
thickness differing by one monolayer [17]. We suggest
that the observed oscillations on the echo amplitude
may be caused by a biexciton state formed by excitons
in different islands. The theory has the same form as
above, except the polarization index s now represents an
island of a particular thickness. The coupling between
two excitons is the same as the interaction terms in
the two-loop diagrams. The exciton energy distribution
is taken to be bimodal with a mean separation h2D„
for s 4 s', equal to the energy difference of the two
excitons belonging to islands differing by one monolayer
thickness. Then, the FWM signal has an oscillatory term
cos(D„2T)in the echo amplitude.
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In summary, we have given a brief description of a
unified theory of the nonlinear polarizability in a quantum
well. The diagrammatic representation provides both a
quantitative theory and a physical picture for a wide
range of observed phenomena in the two-pulse FWM
experiments. The role of the interaction in providing the
rise in negative delay time is evident. The difference
between the interaction for two excitons of the same or
opposite spins leads to a simple physical explanation of
the polarization mixing. The same physics applied to a
distribution of exciton energies also gives an explanation
of the photon-echo-amplitude oscillations in a quantum
well with islands. In the applications of our theory, we
have concentrated on the coherence regime and treated the
relaxation processes in the relaxation time approximation.
In future work, we plan to use our theory to investigate
dephasing and relaxation [18].

We thank D. G. Steel and Th. Ostreich for helpful
discussions. This research was supported in part by NSF
Grant No. DMR 91-17298. M. Z. M. acknowledges a
fellowship from CNPq, Brazil.

[1] D. S. Kim, J. Shah, T.C. Damen, W. Schafer, F. Janhnke,
S. Schmitt-Rink, and K. Kohler, Phys. Rev. Lett. 69, 2725
(1992).

[2] S. Weiss, M. A. Mycek, J.Y. Bigot, S. Schmitt-Rink, and
D. S. Chemla, Phys. Rev. Lett. 69, 2685 (1992).

[3] T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47, 1620
(1990).

[4] M. Lindberg and S.W. Koch, Phys. Rev. B 38, 3342
(1988).

[5] M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W.
Schafer, Phys. Rev. B 42, 5675 (1990).

[6] S.T. Cundiff, H. Wang, and D. G. Steel, Phys. Rev. B 46,
7248 (1992).

[7] D. Bennhardt, P. Thomas, R. Eccleston, E.J. Mayer, and
J. Kuhl, Phys. Rev. B 47, 13485 (1993).

[8] S. Schmitt-Rink, D. Bennhardt, V. Heuckeroth, P.
Thomas, P. Haring, G. Maidorn, H. Bakker, K. Leo, D. S.
Kim, J. Shah, and K. Kohler, Phys. Rev. B 46, 10460
(1992).

[9] K. Bott, O. Heller, D. Bennhardt, S.T. Cundiff, P.
Thomas, E.J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl,
and K. Ploog, Phys. Rev. B 48, 17418 (1993).

[10) T. Saiki, M. Kuwata-Gonokami, T. Matsusue, and H.
Sakaki, Phys. Rev. B 49, 7817 (1994).

[11] H. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer (to be
published).

[12] V. M. Axt and A. Stahl, Z. Phys. B 93, 195 (1994); 93,
205 (1994).

[13] A. Stahl, Z. Phys. B 72, 371 (1988); M. Z. Maialle, E.A.
de Andrada e Silva, and L.J. Sham, Phys. Rev. B 47,
15 776 (1993).

[14] L. Allen and J. H. Eberly, Optical Resonance and Two
Level Atoms (Dover, New York, 1987), p. 41.

[15] G. Finkelstein, S. Bar-Ad, O. Carmel, and I. Bar-Joseph,
Phys. Rev. B 47, 12964 (1993).

[16] M. Koch, J. Feldmann, E.O. Gobel, P. Thomas,
J. Shah, and K. Kohler, Phys. Rev. 8 48, 11 480
(1993).

[17] M. Koch, J. Feldmann, G. von Plessen, E. O. Gobel,
P. Thomas, and K. Kohler, Phys. Rev. Lett. 69, 3631
(1992).

[18] T. Rappen, U. G. Peter, M. Wegener, and W. Schafer,
Phys. Rev. B 49, 10774 (1994).

3313




