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We report on the first measurement of the anisotropy of heat conduction in a heavy fermion
superconductor, performed on a single crystal of UPt; with a current parallel and perpendicular to the
hexagonal axis. Beyond the temperature-independent anisotropy of the normal state, a clear additional
anisotropy develops in the superconducting state. This direct measure of gap anisotropy places precise
constraints on the possible states for the two zero-field phases. An axial gap is excluded for both, and
a comparison with existing calculations favors a d-wave gap for the low-temperature phase.

PACS numbers: 74.70.Tx, 74.25.Fy

The occurrence of superconductivity in strongly corre-
lated 5f electron systems such as the heavy fermion com-
pounds UBe;3 (T, = 0.9 K), URu,Si, (T, = 1.2 K), and
UPt3 (T, = 0.5 K) has intrigued researchers for a decade.
The first indication that these systems cannot be described
by the standard theory (with an s-wave order parameter and
a finite gap at all points on the Fermi surface) came from
the nonexponential temperature dependence of the spe-
cific heat, NMR relaxation rate, London penetration depth,
ultrasound attenuation, and other properties below T..
Although this points to the presence of nodes in the super-
conducting gap, little more can be stated with confidence
about the precise gap symmetry and position of nodes [1].
For a more direct access to the anisotropy of the gap,
a combination of a directional probe and single crystals
must be adopted. Over the years, several attempts have
been made to use this more powerful approach. As yet,
they have all been inconclusive [2], with one exception.
Shivaram et al. [3] measured the attenuation of transverse
sound propagating in the hexagonal basal plane of UPt; for
polarizations in and out of the plane (e//c and e Lc). They
found a clear difference developing below T, with a linear
temperature dependence for e L¢ and a higher power law
dependence for e//c. Their results have led to the con-
clusion that the gap structure of UPt; has a line of nodes
in the basal plane (see Ref. [1]).

Since then, three distinct superconducting phases were
discovered in UPt3, with two transitions in zero magnetic
field and ambient pressure at T = 0.5 K (into phase A)
and 7, = 0.44 K (into phase B), and a field-induced
phase C [1,2]. Most theoretical models for the multicom-
ponent phase diagram are based on a coupling between
the superconducting order parameter and the antiferro-
magnetic moment which appears below Ty = 5 K (see
Refs. [4-6], and references therein). By breaking the
symmetry of the lattice, the coupling is thought to lift a
degeneracy of the order parameter and thus produce two
transitions. These models assign to each phase a certain
superconducting state, and hence to each a specific gap
structure. Theories based on a two-dimensional (2D) rep-
resentation [4,5] assign to phase B either an “axial” gap
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(with point nodes along the ¢ axis), or a “hybrid” gap
(with, in addition, a line of nodes in the basal plane). The
theory of Machida er al. [6] based on a 1D representation
requires either a hybrid gap or a “polar” gap (with only a
line of nodes at k, = 0).

In order to provide a firm assessment of gap struc-
ture, we have used heat conduction as a probe of gap
anisotropy in UPt;. For the first time in a heavy fermion
superconductor, two independent components of the ther-
mal conductivity tensor, k,, and «, (x//a,b and z//c),
were measured on the same single crystal. The results
show an unambiguous additional anisotropy below T,
which excludes an axial gap and favors a hybrid gap for
the low-temperature phase B.

Previous studies of thermal conductivity in UPt; all
arrive at the same basic fact (see Refs. [7] and [8],
and references therein): from T = 0, «(T) increases with
temperature, an order of magnitude faster than in the
standard BCS theory. Quasiparticles are thermally excited
much more easily than would be possible for a gap
without nodes. To go beyond this general fact, a study of
heat transport along different directions of a single crystal
is necessary. Behnia et al. investigated heat conduction
along both the b and the ¢ axes of UPts [8], but the
fact that two different crystals (with significantly different
impurity levels) were used precluded any firm conclusion
about the intrinsic anisotropy of «.

The thermal conductivity was measured using the
steady-state technique with two RuO, thermometers. A
single crystal of cylindrical shape (20 mm length, 6 mm
diam) was grown by Czochralski pulling in ultrahigh vac-
uum. Two sections (of length 2 mm) separated by 10 mm
were cut out and then annealed at 1200 °C for six days.
Their specific heat was measured between 0.15 and 1.0 K
and found to be identical (within 1%), thus confirming ho-
mogeneity. The two well-separated transition jumps are
complete at T} = 0.50 K and T, = 0.44 K, with respec-
tive widths of 25 and 20 mK. Out of one section, two
small and adjacent rectangular pieces were spark cut, each
with dimensions 2.0 X 0.7 X 0.7 mm?. The length of one
is parallel to the c axis and that of the other to the b axis.
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Their high purity is attested to by the low residual resistiv-
ity: for J//c, po = 0.23 p{) cm, the second lowest value
reported for a bulk crystal.

The two components of the thermal conductivity, «;
and ., are displayed in Fig. 1 as a function of tem-
perature. The normal state behavior obeys «xy(T)/T =
(@ + bT?7!, with a = 0.25 (0.09) mK2W~! and b =
1.0 (0.37) m W~! for J//b (J//¢). Quasiparticle scatter-
ing gives rise to the T2 term, which grows to be as large
as the elastic impurity component at T, (i.e., bT? = a).
From Fig. 2, where /T is normalized at 7. = 0.5 K, it
is seen that the anisotropy is independent of temperature
above T,, and «./x, = 2.8 from 0.5 to 0.8 K within 2%.

The anisotropy in the electrical resistivity was also
found to be independent of temperature. The resistivity
obeys p(T) = po + AT? perfectly below 0.8 K, with
po = 0.61 (0.23) uQ cmand A = 1.60 (0.59) xQ cmK™2
for J//b (J//c). The anisotropy in both elastic and
inelastic components is virtually the same: 2.65 and 2.71,
respectively, and p,/p. = 2.7 to within 1% from 0.5 to
0.8 K. This means that the Lorenz number L = xp/T,
although strongly temperature dependent, is nearly
isotropic. By applying a field of 3 T [i.e., above H.,(0)]
and correcting for the known magnetoresistance, ky was
measured down to 0.1 K, to give L(0.1 K) = 0.99L,, as
expected from the Wiedemann-Franz law (i.e., po/a =
Lo = 244 X 1078 W Q K~2), while L(0.8 K) = 0.75Lo.
These numbers suggest that the phonon contribution,
Kph, to the total thermal conductivity, k = k. + Kph,
is very small in the normal state. Indeed, with nearly
isotropic sound velocities [9], a «pn greater than 2%
of x, at 0.5 K would show up as a detectable change
in anisotropy at 0.8 K (Fig. 2). This implies that
kph(Tc) <02mWK ™ 'em™'. In fact, the phonon
conductivity is well below this upper bound. Franse
et al. [7] measured «(T) at temperatures where «pp
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FIG. 1. Thermal conductivity of UPt; for a heat current along

two directions of the hexagonal crystal lattice: J//c (open
circles) and J//b (solid circles).
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FIG. 2 Thermal conductivity divided by temperature vs re-
duced temperature for the two directions of heat current.
xp, and k. are both normalized to unity at 7 = 0.5 K. Note
the additional anisotropy appearing below T, (arrow).

becomes sizable. From their data, one can extract
kph = 0.5k =4 mWK 'cm™! at 5K. The T? depen-
dence due to electron scattering (the dominant process
below 10 K) then yields xph(7:) = 0.04 mW K™ 'cm™!,
namely 0.4% of our measured «,(T,).

The normal state of UPt; is often characterized as a
Fermi liquid: there is a Fermi surface and, the specific
heat is linear in temperature (C/T = y) below 1.5 K. The
coefficient y is enormous, due to the huge renormalized
masses. It is interesting to ask whether the electrons re-
sponsible for the large vy are also the carriers of heat. From
de Haas—van Alphen measurements on crystals of similar
quality [10], the Fermi velocity and mean free path of elec-
trons on the largest surface (which accounts for most of the
density of states) are vr = 5500 m/s and [, = 220 nm.
With ¥ = 0.422 JK2mol~! [9], the thermal conductiv-
ity of quasiparticles is k,/T = 3yvrl = 40 WK 2m™!
at T < 0.1 K. The measured value (in the normal state)
is ky/T = Lo/po = 4.0 WK™2m™!, for J//b. Although
this perfect agreement is fortuitous, it is a confirmation that
the Fermi liquid picture of heavy and itinerant quasiparti-
cles is quantitatively consistent in UPt;.

Our main result is the additional anisotropy which de-
velops in the superconducting state, as seen in Fig. 2.
The large, temperature-independent anisotropy of the nor-
mal state is considerably reduced at low temperature
(Fig. 1). This is made evident in Fig. 3, where the ra-
tio «.(T)/«»(T) is plotted as a function of temperature.
Such a change can only be due to gap anisotropy. A
conventional “s-wave” gap A(k), although finite every-
where on the Fermi surface, can be smaller for certain
k directions and thus lead to an anisotropy in the elec-
tronic thermal conductivity «, below 7.. This is what
happens in zinc [11], where A(k) is smaller for k in the
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FIG. 3. Anisotropy ratio vs temperature. The constant

anisotropy of the normal state drops, below T (arrow) exclud-
ing the possibility of an axial gap for phase B. Inset: «./k;
normalized at T vs ¢+ = T/T_; data (circles), and theoretical
curves for three gap structures: axial (dotted), polar (dashed),
and d wave (solid) (after Ref. [16]).

hexagonal basal plane. An unconventional gap, however,
which actually vanishes for certain k directions, will not
only lead to an anisotropy in «., governed by the distri-
bution of nodes, but will cause «, to rise with tempera-
ture much more rapidly, reflecting the ease with which
quasiparticles with k vectors near the nodes can be ther-
mally excited. And indeed, it is the sheer magnitude of
K. in UPt; at low temperature which distinguishes it from
conventional superconductors. From standard BCS the-
ory [12], x./xy—the electronic thermal conductivity cal-
culated for impurity scattering only, normalized by the
normal state conductivity—increases very slowly at first
and reaches only 4% of its value at 7. by T = T./4. This
is what is observed in pure Al [12], and similarly for
other pure superconductors with low 7./6p: 3% in Nb
[13], 2%—-3% in Sn [14], and 1%—-2% in Zn and Cd [11].
On the other hand, in UPt3;, «/«y has already risen to
27% of its normal state value at 7./4 (J//b). More than
any power law dependence, this order-of-magnitude dif-
ference in the rate of thermal excitation of quasiparticles
is compelling evidence for nodes in the gap. Of course,
this is reflected in other properties; for the electronic spe-
cific heat, C.;/yT. = 1/40 at T./4 in standard supercon-
ductors [12], while it equals 1/8 in UPt; [1].

The above arguments assume that « is mostly electronic
below T (kpn < k). Let us verify this. We have shown
how kpn at T, is approximately 0.4% of the measured
x5(T.). In the superconducting state, the number of elec-
trons that scatter phonons drops. In UPts, the rate of de-
crease is much slower than in BCS superconductors, and
from the specific heat one can argue that the number has
dropped 5 times less at T./4. In Nb [13], «pn(Tc/4) =
126pn(T;), so that in UPt; one might roughly expect
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kpon(Tc/4) = 12/5kpn(T:) = 0.1 mW K~ 'em™!, which is
5% (8%) of the measured . (k) at T./4 = 125 mK.
The proportion will rapidly get smaller at higher tem-
peratures. Admittedly, this is a rough estimate of kg, in
the superconducting state, but greater accuracy requires a
full-fledged calculation. The essential point is that even
a 20%-30% contribution from phonons at 7./4, which
drops to less than 1% at T., would have little influ-
ence on our analysis and conclusions. For example, if
kph = 0.3k, at 125 mK, the electronic . /«, would equal
1.65, instead of the measured 1.5 (Fig. 3), a 10% correc-
tion which decreases rapidly. It is because phonons can
be neglected that the thermal conductivity is a privileged
probe of quasiparticle excitation in this superconductor.
Now that we can exclude a conventional s-wave gap,
the position of the nodes is the question of interest. A
careful distinction must be made between phase A (from
T to T}) and phase B (below T,”). Inspection of the data
(see Fig. 2) reveals little change in either «, or «. with the
appearance of phase A. This unusual insensitivity is sug-
gestive of a nodal structure isotropic in the b-c plane (such
as a line in that plane). In contrast, the anisotropy «./x;
starts to drop with the onset of phase B at T (Figs. 2
and 3). This may be an indication of a different nodal
structure in the gap of phases A and B. That «./«, drops
allows us to discard unambiguously the possibility of an
axial gap for phase B. This immediately eliminates two
of the four candidate representations for the order param-
eter in the “2D theory” [4,5] for the phase diagram of
UPt3;. Indeed, the (1, i) state attributed to phase B has
an axial gap in both the E;, and E,, representations. On
the other hand, it has a hybrid gap in the E;; and E,,.
In order to determine what gap structures are truly com-
patible with our results, detailed calculations are essen-
tial. Assuming resonant scattering of quasiparticles by
impurities, Hirschfeld, Wolfle, and Einzel [15] and Arfi,
Bahlouli, and Pethick [16] calculated «,(7T) and «.(T)
for three simple gap structures: A(K) = Apay cosé (polar),
Aaxe'? sind (axial), and 2Ap.e’® sinf cos@ (“d wave”).
A direct comparison with their calculations is not strictly
possible, mainly because of their neglect of inelastic pro-
cesses. Since that may not have much of an effect on the
anisotropy, we begin by comparing our data with the ra-
tio k./k, obtained from the results of Arfi, Bahlouli, and
Pethick [16]. This is shown in the inset of Fig. 3, for the
three gap structures. The axial gap can obviously be dis-
carded. The polar gap yields much too rapid a drop, and
unless electron scattering and Fermi surface effects prove
to have a dramatic impact on the anisotropy, this would
seem to disqualify all but one of the candidate states in the
“1D theory” [6]. Although the data is 30% more isotropic
than the d-wave prediction, the comparison argues con-
vincingly for a hybrid nodal structure. Whether it is this
particular gap, associated with the k,(k, + ik,) state of the
E,, representation [4,5], which is ultimately confirmed,
or the hybrid gap of the A,, [6] or E;, [S], with their
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different k dependence, can be established only by further
calculations. The temperature dependence of «./k; is a
new and potentially decisive element in the current debate
over 1D vs 2D and E; vs E3, scenarios [5,6].

In Fig. 4 we compare the separate «,(T) and «.(T) data
with the calculations of Ref. [16] for the d-wave gap, as-
suming resonant impurity scattering in the unitarity limit
(phase shift of 77/2). Both the data (circles) and the cal-
culated curves (lines) are plotted as [«(T)/T1/[«(T.)/T.].
T. is taken to be 7, = 0.44 K, and the comparison ap-
plies to phase B. Because of inelastic scattering, it can
only be qualitative. Nonetheless, the overall temperature
dependence is not far off. The fact that the data lies above
the theoretical curves is due to the neglect of inelastic
scattering. As a lowest order treatment, we “take out” the
scattering time by normalizing with xy(7T). As seen in
the inset of Fig. 4, the d-wave calculation gives a correct
overall temperature dependence for «/ky, albeit with an
exaggerated anisotropy.

We conclude that phase B of UPt; most probably has a
hybrid gap, the anisotropy of which was directly revealed.
The only other direct measure of gap anisotropy, the
early transverse ultrasound study of Shivaram et al. [3],
is consistent with our findings for phase B. Given
more realistic calculations, our results can lead to a
greater precision in the identification of the gap, with the
prospect of further discriminating between the allowed
representations for the order parameter.

A distinguishing feature of a gap with nodes is the pos-
sibility of a finite linear term in «(7) at low temperatures
even for a small amount of impurities [15]. Although
there is no indication of this in our data, a residual «/T
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FIG. 4. Thermal conductivity of phase B vs reduced tempera-
ture T/T., for J//c (open circles) and J//b (solid circles).
The data are plotted as «/7T and normalized at T, = 0.44 K.
The solid lines are calculations by Arfi, Bahlouli, and Pethick
[16], for a d-wave gap. Inset: the same calculated curves,
compared with «(7)/xx(T) (circles).

could still be present and show up below T /5. If it ex-
ists, it is at most 20% of the value at T, or 10% of xy/T
atT = 0.

In summary, for the first time the thermal conductivity
was used to establish the presence and help determine the
position of nodes in the gap structure of a superconduc-
tor. From the drop in anisotropy observed upon entering
the superconducting phase B of UPts, the possibility of
an axial gap associated with that phase is definitively ex-
cluded. Instead, a comparison with existing calculations
strongly favors a hybrid gap, with both a line of nodes in
the basal plane and point nodes along the ¢ axis. There
appears to be negligible b-c anisotropy in the gap struc-
ture of phase A. There is no evidence of a residual lin-
ear term at 7 = 0 which would indicate a finite density
of zero-energy quasiparticle excitations. Further calcula-
tions, including quasiparticle-quasiparticle scattering and
the real Fermi surface, applied to all potential gap struc-
tures would allow a critical assessment of current theories
for the phase diagram.
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