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Fluctuation-Induced First Order Transition between the Quantum Hall Liquid and Insulator
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We study the phase transition between the quantum Hall liquid and the insulator within the framework
of the Chem-Simons-Landau-Ginzburg theory of the quantum Hall effect. For the transition induced

by a background periodic potential in the absence of disorder, the model is described by a single
relativistic scalar field coupled to the Chem-Simons gauge field. Within the regime of parameters where

perturbation expansion is valid, we show that the transition is first order, induced by the fluctuations of
the gauge field, rather than second order, with statistical angle-dependent scaling exponent.

PACS numbers: 73.40.Hm, 71.28.+d, 71.30.+h

Recently the Chem-Simons-Landau-Ginzburg (CSLG)
theory [1,2] of the quantum Hall effect has been applied
to study the phase transition between the quantum Hall
liquids and between quantum Hall liquids and insulators

[3]. The central idea of this theory is to map the transition
in the quantum Hall systems to the transition from super-
fiuid to insulator. For the primary quantum Hall states,
the off-diagonal long-range order of the quantum Hall liq-
uid state [4] allows one to identify it with the superfiuid
state of bosons, and the insulating state in the quantum
Hall systems, the Hall insulator, is identified with the insu-

lating state of the bosons. The resulting theory describes
nonrelativistic bosons coupled to the Chem-Simons gauge
field. The transition between the superfluid and the in-

sulating state of bosons is induced by either disorder or
the magnetic field. Using the CSLG one can derive a
set of "laws of corresponding states" [3,5] relating the

disorder-induced second order phase transition in the in-

teger quantum Hall effect to transitions in the fractional
quantum Hall regime, as long as these transitions are in-

duced by disorder as well. Kivelson, Lee, and Zhang [3]
constructed a global phase diagram of the quantum Hall
effect in the two-dimensional parameter space of disor-

der versus magnetic field and identified relations between
the various interplateau transitions and transition between

quantum Hall liquid and the Hall insulator. In the case of
strong disorder, the integer transition is widely believed to
be of the second order. From the point of view of the law

of correspondence, the fractional transition in this limit

should be of the second order as well [6]. This point of
view is supported by experiments [7] where similar crit-
ical exponents were measured for both integer and frac-
tional transition. However, the situation is less clear when
the transition is dominated by interaction rather than dis-
order. There are some theoretical indications that the tran-

sition from a quantum Hall liquid to the Wigner crystal is
first order [8]. In this paper we shall study the order of
the transition in the absence of disorder within the frame-

work of CSLG theory.
Within the CSLG theory, the transition in the quantum

Hall effect without disorder is mapped to a boson super-

fluid to insulator transition driven by either interaction or

some periodic potential. It is argued that the transition
of boson superfiuid to insulator induced by background
potential belongs to the same universality class of three-
dimensional XY model or relativistic scalar field theory
with a mass term and P4 interaction [9]. Applying CSLG
theory to this system naturally leads to a model of rela-
tivistic scalar field coupled with the Chem-Simons term

[10]. The critical behavior is obtained by tuning the mass
of the scalar field to zero. Wen and Wu [10] studied this
model in the limit where N, the number of components
of the scalar field, is large. They found that the Chern-

Simons gauge field is a marginal perturbation to the scalar
field fixed point, so that the critical exponents depend on
the coefficient of the Chem-Simons term, or the statistical
angle, which is defined by the filling fraction of the quan-

tum Hall state [12]. The same phenomenon was found in

the Mott transition of anyons on a lattice [11],where the

scaling exponents depend on the statistics of the anyons.
While we agree with the result [10] within the large

N approximation, in this paper we show that in the

physically relevant case of N = 1, and in the regime
where perturbation expansion is valid, the phenomenon
of statistical angle-dependent critical exponents does not
occur [12]. In fact there is no critical point in the weak-

interacting theory when gauge field is present. Instead,
the transition is first order, driven by the fluctuations of
the gauge field. The difference with the previous large N
result lies in the underestimate of the gauge fluctuations
within the large N approximation.

The phenomenon of the first order transition induced by

gauge fiuctuations is known in both particle physics [13]
and condensed matter physics [14]. Coleman and Wein-

berg [13] studied the four-dimensional Abelian Higgs
model and found that even if one tunes bare mass to
zero, the fluctuations of the gauge field always generate
a mass dynamically. Thus there is no critical point in

the theory. Independently, Halperin, Lubensky, and Ma

[14] discovered the same phenomenon in the Ginzburg-

Landau theory of superconductor to normal metal transi-

tion and showed that the fluctuations of the electromag-
netic field induce a first order transition. Our work is
basically an application of these ideas to the quantum
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Hall systems: We show the phenomenon of fluctuation-
induced first order phase transition also occurs here.

Since the CSLG model is constructed from some
general principles, we believe that our analysis implies
that the commensurate Mott transition from a quantum
Hall liquid to an insulating state in the absence of disorder
is generally a first order transition. This model can be
useful in understanding the transition from the quantum
Hall liquid state to the Wigner crystal state which is
believed to be a first order transition [8]. Since there
is no critical point in this model, it cannot be used
to address any questions about the critical properties
of the disorder-induced transition in the quantum Hall
systems. In particular, the phenomenon of statistical-
angle-dependent critical exponents does not occur in this
model, therefore there is no theoretical basis to conjecture
that similar phenomenon would occur in disorder-driven
transition in the quantum Hall effect [10].

The Lagrangian of interest is the 2 + 1 dimensional
relativistic scalar field coupled to the Chem-Simons gauge
field. In Euclidean space it is given by

L [a, P] =o;~ a"'—a; Bja~ + 1(BJ
—+ &aj)$1'J 2 J

+ 2m'l4 I'+ —lpl'+ —141', (1)
1 2 2 A

where o„~ = 1/8 —= I/2n. q is the Hall conductivity, q
is an odd integer, and m, A, and g are the mass
and interaction constants of the scalar field. We have
explicitly included the sixth order term, which is a
marginal operator in three dimensions. A logarithmically
divergent contribution to the sixth order term occurs in the
loop expansion, therefore, keeping this term is necessary
to ensure renormalizability.

When the complex field P develops a vacuum expec-
tation value, the U(l) symmetry is spontaneously broken.
This superfluid phase of the boson field corresponds to
the quantum Hall liquid state [2]. On the other hand,
the insulating state corresponds to the case when the vac-
uum expectation value of the field P vanishes. At the
level of the classical potential, this transition occurs at
m = 0. The jtp4 interaction is a relevant perturbation
to this Gaussian fixed point. The associated infrared di-
vergences are usually controlled either by introducing a
large N generalization of the model and carrying out a
systematic 1/N expansion or by staying close to the criti-
cal dimension of four and carrying out an e = 4 —D ex-
pansion. In the present context, however, the 1/N ex-
pansion has the drawback of underestimating the effect
of the gauge field fluctuations. Since there are N scalar
components and only one component of the gauge field,
the effect responsible for fluctuation-induced first order
phase transition is not visible to first order in 1/N. For
example, in the case of a superconductor to normal state
transition, the gauge fluctuations only induce a first order
transition when N ( 365.9 [14]. On the other hand, the e
expansion from four dimensions is not well suited for the

Chem-Simons term which is naturally defined at D = 3.
In this work we control the infrared divergences associ-
ated with the massless point m = 0 by staying close to
the "tricritical point" [15]where A = 0 as well and study-
ing the effects of marginal operators cT y and g within the
loop expansion.

Without the coupling to the Chem-Simons gauge field,
the point m = A = 0 is tricritical: For a finite positive g
the transition is first order when A ( 0, and it is second
order when A & 0; the first and second order lines meet at
the tricritical point. The critical dimension for the theory
at the tricritical point is D = 3, one can therefore carry
out a systematical perturbation expansion in the number of
loops. We shall show that with the coupling to the Chern-
Simons gauge field the physics is changed fundamentally:
While the model at the tricritical point is massless and
has no dimensionful coupling constants at the classical
level, quantum fluctuations associated with the Chern-
Simons gauge field induce an effective potential which
has a minimum away from P = 0 and some dynamically
generated mass scale. Since the physical mass scale at
the point m = A = 0 is finite, introducing a small finite A

could not lead to uncontrolled infrared divergences. From
this argument one can show that the fluctuation-induced
first order transition may occur even in the presence of a
finite A.

We first present our result of the one-loop effec-
tive potential calculated within the path integral tech-
nique. Within one-loop accuracy, we assume a space-
independent configuration of the scalar field P(x) = $0
and integrate out the fluctuations due to both the scalar
and Chem-Simons gauge fields. The equivalent se-
quence of Feynman diagrams for this calculation is shown
in Fig. 1.

At the classical level, the Chem-Sirnons gauge propaga-
tor is purely off diagonal; it is proportional to e"'P&/p.
At the quantum level only finite renormalization of the
Chem-Simons term may happen [16]. There could also
appear an additional diagonal term in the gauge propaga-
tor; we verified that it is also finite to the second-loop order.
The "dressed" propagator, accounting for this correction,
is given by

rj p~pj pl
(2)

2g . ijl

P P
px

where, as usual, p„„=o.„„/(o.2„+ tr2 ), p„Y = o.„Y/
(cr2, + o.2 ). At the one-loop level rr„r is not renormal-
ized, whereas a finite tr„„=N/24 is obtained for the
N-component scalar field. We shall use this form of the
gauge propagator to keep our analysis general.

Di~ = Pxx

+0 ~ ~

FIG. 1. Gauge loops contributing to the effective action (7).
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The one-loop effective action is defined by

1 ~ 82S[a, @]S n[@o] = S[0.Po] + —1n det
( 8[a, .=o j (3)

(m + 3k@ + jgg4) / + (m2 + A/2 + g$4) /

12m'

where the Euclidean action is S[a, P] = f d3x J' [a, P]. We calculate this fluctuation determinant at Po = const within
the covariant gauge 8;a; = 0 by the g-function regularization scheme. The result is given by

BV(P) = ln (4)

where M is a mass scale introduced by the regularization
procedure. Note that within the first-loop approximation
regularized corrections due to self-interactions contain no
logarithmic divergences.

Next we introduce normalization conditions to define
values of the renormalized coupling constants. Because
of the logarithmic dependence of our effective potential
on 4, the coupling constant g has to be defined at some
finite scale p,

Vq'(4' = u) = 2g. (5)
Also, in the tricritical point

Vy2($ 0) A 0 Vy2(P = 0) = m = 0. (6)
With these normalization conditions, we arrive at the one-
loop effective potential

4p-(3p.', p.'.) (—
mz ( p

11 t

6/ 3
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(7)
The qualitative features of this effective potential are very
similar to those obtained from the scalar electrodynam-
ics in four dimensions [13]. In four dimensions, both
coupling constants, the electric charge e, and A are di-
mensionless, and the resulting effective potential can be
viewed as logarithmic corrections to the A/4 coupling.
Here in three dimensions, both the gauge couplings p„„
and p,Y

and the scalar coupling g are dimensionless; the

resulting effective potential can be viewed as logarithmic
corrections due to these marginal operators. The effective
potential is bounded when 3p2 & p2„, which is so in the
clean fractional quantum Hall system we are interested in.
In the opposite case, the effective potential is unbounded
at the one-loop level; however, we believe that higher or-
der corrections will cure this unphysical feature [17]. In
the case of 3p2, ) p2„one can easily see that (7) has

a global minimum at P;„=p, exp(3/2 —g/n), away
from the origin, and the value of the effective potential at
this minimum V,rq($;„) = —(5n p, 3/6) exp(9/2 —3g/u)
is negative. Here n is the coefficient in front of the
logarithmic term in (7). Furthermore, the effective mass
at this new minimum is given by m, ff V ff(P;„)/2 =
2ap, 2 exp(3 —2g/u). This is the general feature of the
dimensional transmutation: Although the classical model
at the tricritical point m = A = 0 is free of any dimen-
sionful parameters, a mass scale is generated dynamically

by the quantum Auctuations. The classical tricritical point
is, in fact, not a critical point at all.

-0.5 0.5

FIG. 2. The phase diagram of the one-loop effective action
(7) in the scaled coordinates m2 = mien~ /ap2 versus A. =
Ae'~ /ap, . The solid line represents the first order phase
transition between the nonsymmetric and symmetric phases A
and 8 for m.' & 0; for rn~ ~ 0 it is the 6rst order ~sition
between two nonsymmetric phases A and C with different
expectation values of the order parameter P. The second otder
transition between 8 and C is shown with the dashed line.
Captions draft the effective potential V,ff'(P) in appropriate
regions. Dots show the phase boundary without the couphng
to the gauge field.

Our analysis is carried out at the point m = A = 0.
Without the coupling to the Chem-Simons gauge field,
this is a Gaussian fixed point if g = 0 and a tricritical
point if g & 0. In both cases A is a relevant perturbation
in three dimensions. Conclusions reached for the case
A = 0 certainly do not carry over to the case of finite A

because of the strong infrared divergence associated with
this relevant perturbation. In the present case, however,
since the effective mass at the point m = A = 0 is finite,
there is a finite "Ginzburg region" defined by

mcff ~ m && m~f f (8)
As long as A and rn lie inside this region, their effects can
be treated classically. By studying the structure of the
minimum of the total potential, zm I@I + zl41 + Veff

we obtain the phase diagram shown in Fig. 2. Note that
while the position of the tricritical point is shifted, it is
still far away from the edge of the applicability of the
theory which in the dimensionless variables is given by
A. « +2e /, m, « 2e; this implies that the fluctuations
due to A and m do not change the qualitative features of
the phase diagram. From Fig. 2 we see explicitly that
the transition is first order for small enough A. For large
enough A the transition from the insulator to quantum
Hall liquid may be second order, and there is also a first
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p=—
(37, 4+ g~, p„+,p-

From (11)we see explicitly that g flows to negative values
if its bare value is small enough,

7
12m2 g .

p„„+ llp2 /16

This "runaway" trajectory is usually taken as an indication
of the first order phase transition [14). For small g, we
can keep only the first two terms in the expansion of the

p function in g, p(g) = po + ptg. Integrating the RG
equation within this approximation we obtain the effective

otentialp

y( ) 2 s g g+(
((3 + B)(2+ b)(1 + b) i p ) 6 )

(12)
where b = pi/(I —2y) = pi. This potential has a global
minimum away from the origin, indicating the first order
transition. In our approximation it is bounded for all
physical values of p „and p„~, and the first order transition
occurs even when p„„=0.

In conclusion, we have investigated the order of the
commensurate Mott transition from a quantum Hall liquid
state to an insulating state in the absence of disorder
Within the CSLG theory, and in the regime of parameter
space where perturbation expansion is valid, we show that

order transition between two quantum Hall liquid states.
However, these phenomena all occur in the regions of
parameter space which are not perturbatively connected to
the noninteracting theory; one cannot make any definitive

statement about the character of these transitions.
A drawback of the one-loop approximation is that log-

arithmic corrections to the potential gps vanish when

p„„=0; therefore, if we strictly use the one-loop approxi-
mation with the pure Chem-Simons propagator rather than

Eq. (2), the regularized effective potentials do not change.
It turns out that at the second-loop level the finite renormal-

ization to the gauge propagator is automatically included.
Therefore, to make our analysis complete, we have car-
ried out the two-loop calculation of the effective potential.
We have checked that infinite corrections for p,„and p„s
vanish in the second-loop order (this result for the pure
Chem-Simons propagator has been obtained earlier [16]).
The effective potential is obtained from the solution of the
renormalization-group (RG) equation:

a a
P + p(g) +2—y(g)4'

gP2)

subject to initial conditions (5) and (6). To the second-
loop order the coefficients are

&4p,. 7p!, )2y= —
I

" +
i 3m' 24~') '

this transition in generally of first order, induced by the

fluctuations of the Chem-Simons gauge field. Because
there is no critical point in this theory, the phenomenon

of the statistical-angle-dependent critical exponents does
not occur. We believe that our theory is generally

applicable to quantum Hall phase transitions dominated

by interaction rather than disorder, which is the opposite
limit compared to that studied in the work on the global

phase diagram [2]. In particular, this theory could provide
a framework to study the transition from a quantum Hall

liquid to a Wigner crystal in the limit of pure samples.
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