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We consider a 2D electron system in a strong magnetic field, where the local Hall resistivity p„(r) is
a function of position and p, (r) is small compared to p„.. Particularly if the correlations fall off slowly
with distance, or if fluctuations exist on several length scales, one finds that the macroscopic longitudinal
resistivity R„„ is only weakly dependent on p„„and is approximately proportional to the magnitude of
fluctuations in p„,. This may provide an explanation of the empirical law R„, ~ 8dR„, /dB where R„
is the Hall resistance, and B is the magnetic field.

PACS numbers: 73.40.Hm

Almost ten years ago, it was noticed that the longitu-
dinal resistance R„„ofa quantum Hall system looks very
much like the derivative of the Hall resistance R„, with re-
spect to filling fraction [1]. More recent experiments [2]
have shown that, in high mobility samples, the relation

R„„=aB dR„y
(1)

with B the magnetic field, and u a constant, holds
amazingly well over a wide range of temperatures and
magnetic fields, including both the integer and fractional
quantized regimes, and unquantized regions where R„~
varies linearly with B, as for a classical system. The
constant n is sample dependent, and varies somewhat
with temperature, but is typically in the range 10
to 10 i. Despite the simplicity and generality of this
empirical relation, it has defied explanation for almost a
decade. In this paper, we concentrate on temperatures
that are not very low and we propose an explanation based
on inhomogeneities in density over relatively long length
scales.

We consider a two-dimensional electron system
where the local electron density n(r) is fixed by the
charged impurity distribution in a nearby doping layer
[3]. We assume that the fluctuations in the density
bn(r) = n(r) —np are much smaller than the average
density np, and we define a dimensionless correlation
function g such that (Bn(r)Bn(r')) = p2g(~r —r'[) with

g(0) = 1, and g(x) ~ 0 as x ~ ~. Although we will
later be concerned with the effects of disorder over
several length scales simultaneously, to begin with, we
will consider the case where there is only disorder on a
single length scale a. As an example of a correlation
function with a single length scale, we can consider
g(x) = exp( —[x/a]2). Typically, the length scale a of
any disorder will be greater than or equal to the setback
distance of the doping layer. If a is sufficiently long, we
can define a loca/ resistivity tensor p(r) which depends
on the local conditions. We assume that at a fixed
temperature T, the local Hall resistivity p„s(r) = —

pY (r)
is purely a function of the local filling fraction v(r) —=

Ppn(r)/B with @p = hc/e. This assumption is certainly

valid at high temperatures, where p„Y takes on the clas-
sical value, p„,(r) = h/v(r)e . The assumption should
also be valid at least as a first approximation in the ranges
of T and B where the integer or fractional quantized Hall
plateaus begin to develop. Then, if the density fluctua-
tions are not too large, we may write p„Y(r) = f(v(r)) =
pp + Bp„~(r), where pp = f(vp), vp = Ppnp/B, and

Bp,~(r) = f'( v)pp Bpn(r)/B. Thus we have (Bp„,) = 0
and (Bp„(r)8p,(r')) = A'g(~r —r'~), with A =
f'(vp)@pp, /B We a. lso assume that there is a local
diagonal resistivity p,„(r) which may depend on the
temperature and the magnetic field, but which is small
compared to A. This assumption should be quite reason-
able for high mobility samples. For simphcity, we shall
take p„,(r) = p, independent of r.

It should be emphasized that if T is not too low,
the electronic wave function is not coherent over long
length scales, due to inelastic scattering. Thus, long-
range quantum interference effects are not seen. In
addition, so long as the disorder is on a sufficiently
long length scale, this inelastic scattering allows us to
define the resistivity tensor p(r) as a local quantity.
Although quantum mechanics is important in determining
the value of this local tensor (through p and f), once the
tensor is determined, we are left with a purely classical
conductivity problem. We will find by analyzing this
classical problem that the resistivity law (1) is relatively
insensitive to the specific behavior of p and f We wiii.
therefore avoid a detailed calculation of these quantities.

We now want to find the macroscopic resistivity R„„
for the system. The current profile j(r) is defined by
Maxwell's equation V X K = 0 and current conservation,
Using K = pj, we can thus define the current with the
system of equations

Vx (pj) =0, V. j =0,
along with appropriate boundary conditions and the con-
dition that the spatial average of j have a specified value

jp. By using the second equation of (2), we can rewrite
the first equation as

(Vp x j) + p(V x j) = 0,
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which is clearly independent of po. The total dissipation

per unit area is given by zR„„~jo) . Since the local

dissipation ~ p(j) is independent of po, R must also be
independent of po. On dimensional grounds (since R,„
depends only on A, p, and the function g), we expect that
in the limit p 0 the longitudinal resistance should have
a scaling form

R„= CA' p (4)

where C is a nonuniversal constant that depends on the
form of the function g. Calculations described below sug-
gest that the exponent cu can be close to zero, particularly
if we consider the effects of disorder on several length
scales simultaneously. If indeed we find that ai = 0, then
we have R,„=CA = Cf'(vo)/op/B. On the other hand,
the Hall resistance will be given by R„Y = po + 8(A ) =
f(po) so BdR„~/dB = f'(vo)pano/B, thus establishing
Eq. (1) with n = Cp/no

A different model, which may be more applicable
for high mobility systems at temperatures that are not
too low, has dissipation arising from electron-electron
scattering, which causes no dissipation for a uniform flow
velocity. If the magnetic field is not too strong, we may
represent this by an electron Quid viscosity g, instead
of a resistivity p, so that the local dissipation is given
by gn'(V x (j/n)( rather than p[j(2, with j the local
current density. In this case we find the similar result
R„„=Ca 2"1' "iI". If the exponent a is sufficiently
close to zero, so that we may neglect the field dependence
of i1, we may again derive the resistivity law (1).

The conductivity problem described above has been
studied by various authors [4—6]. These analyses con-
clude that the exponent ru for the case of a local resistivity

p, with finite range correlations in p„y, is cd =
~g 0.23.

A similar analysis for the case of a local viscosity gives
cu = —,9, as will be discussed below.

A starting point for understanding this conductivity
problem is the observation that, in the limit p ~ 0, the
current j(r) can travel only perpendicular to the gradient
of p„Y(r) since the second term in Eq. (3) vanishes. Thus,
for small p, the transport current is confined to the neigh-
borhood of a contour of constant p„Y(r) which percolates
across the system [4,5]. If 8p,Y(r) is statistically symmet-
ric about zero, then this percolating contour [7] is defined
by p„~(r) = po. As p is increased, the current spreads out
somewhat from this contour. The physical interpretation
of ~ = 0 is that (in either the viscous case or the resis-
tive case) as we decrease the dissipative part of the local
resistivity (fixing the total current across the system), the
current profile readjusts such that the total dissipation re-
mains approximately fixed.

If we imagine one of the percolating contours of
p ~(r) = po to be locally pointing in the y direction, we
can write locally Bp,Y(x, y) = xQ(y) for some function
Q. Since we suspect that the current will follow along this
contour, we propose that the y component of the current

can be written in the form jY(x,y) = JS[x/w(y)]/w(y),
where J is the total current carried by the channel, w(y) is
the local width of channel, and S is an unknown function
satisfying the normalization condition f dz S[z] = 1. Of
course, once we know j„, j„ is determined by current
conservation. In the small w limit it is easy to show
that a solution to the system of Eqs. (2) is given for the
functional form S[z] = exp( —z2/2)//2m. when the width

~ of the channel is determined by the differential equation

d[(wQ)"]/dy = pp-Q' ' (5)

where p = 2 here. In the case of viscous dissipation,
we find a differential equation similar to (5), except that

p is replaced by g, and p = 4. In the viscous case,
the function S must be chosen to satisfy the differential
equation d'S(z)/dz' = —zS(z).

As an explicit example, we consider the periodic ge-
ometry h p„(r) = A(cos[m. (x + y)/s] —cos[m. (x —y)/s])
which has a square lattice of saddle points at (x/s, y/s) E
Z2, and we take p « A « po. We assume an average
current jo in the y direction so that the current flows
down channels of fixed p„~(r) = po along the x = integer
lines. Near the channel at x = 0, for example, we write

Bp„~(x,y) = xQ(y) with Q(y) = Hsin(my/s)—, where H
is the characteristic perpendicular slope of the function
8p„,. In this geometry we have H = 2n.A/s, but in a more
general geometry, H —A/a, where a is the characteristic
length scale of the density fluctuation.

Integrating w from one saddle to the next in Eq. (5),
we find that the width of the channel is given by
w(y) = /ps/mH~ sec(ny/2s)~ in the resistive case. Of
course the small w approximation breaks down near the
points where this expression diverges, so the solution
must take a different form very close to these points.
The important thing to extract from this result is that
the characteristic width W of the channel scales as
W —/ps/H. Numerical solutions [8] of the system of
Eq. (2) to find the exact current profile in this periodic
geometry (as well as in other simple geometries) support
this conclusion. Since we have determined the current
profile, we can also calculate the local dissipation p)j)
and thus extract the resistance of this current-carrying
channel. In general, we find that the resistance of a
channel of length s scales as R, —ps/W —HW. A
similar argument for the case of viscous dissipation yields
the results W —(ris/H)'~ and R, —gs/W' —HW.

We must remember, however, that we do not actually
have a regular array of saddle points. We have instead
a tortuous conduction network. We define a percolation
problem by choosing a cutoff e, considering all points
such that ~Bp„Y(r)~/A & e to be "conducting" points, and
all other points to be "insulating. " This type of problem
[7] has a critical value of e, = 0, provided we take
Bp y to be statistically symmetric about zero. Our actual
system will have thin channels of width 8' centered at
the percolating Bp y

= 0 lines, and we will require for
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self-consistency that e —W/a for these channels. The
percolation network has a weblike topology consisting of
essentially one-dimensional conduction paths that snake
through the system and intersect each other once every
distance g. More properly, the correlation length g is
defined as the size of the largest insulating islands in
the conducting network. As we approach the percolation
threshold by letting e 0, the conduction channels
become thinner, connections between conduction paths
are broken, and the correlation length diverges as g-
as ". For the case where the disorder has only one length
scale, it is known that p = —, [4,7,9].

Although the conduction path in this percolation prob-
lem can branch somewhat [4,7,9] on scales smaller than

g, forming dead-end loops and small multiply connected
regions, it is assumed for now that the current effectively
follows a one-dimensional path around the perimeter of
these branched regions [4,6]. The length of such a path
connecting points separated by a distance g scales as
a(g/a)n, where D is the fractal dimension of the path.
For this particular problem, where there is only one length
scale, it is believed that D =

4 [4].
Because of the weblike topology of the network, we

can think of the percolation network as an effectively
periodic system similar to the one we analyzed above

[4,6]. Here the periodicity length is g. However, since
the channels are not straight, the length s of the conduc-
tion channels must be taken to be the typical path length
a(g/a)D between intersections of macroscopic conduc-
tion paths. Thus we have W —Qps/H —ai/p('n/Lao .
On the other hand, our self-consistency condition requires
W —ae. Using g —ae ", we find p —Ae2+ "~. Since
the system is homogeneous on length scales larger than $,
and since there is typically only one conduction path per
square of length g on a side, the macroscopic longitudinal
resistivity is given by R„„—R, —HW —Ae —A' "p"
where co = (2 + vD) ' = —

ii in the case of a single dis-

order length scale. This result agrees with the previous
work of Refs. [4] and [6]. An analogous calculation can
be performed for the viscous case with a single disor-

der length scale (using W —[gs/H]ii4 instead of W-
Qps/H ) to give the result cu = (4 + vD)

Although these arguments seem quite reasonable and

are in decent agreement with existing numerical work

[4], it is possible that they are not exact. In particular,
we are not very certain of the fractal dimension D of
the conduction path. For example, if the current were
to readjust itself only very slightly so as to cut off dead-
end loops, D might be changed. However, it is clear that
1 ~ D ~ 2, and this uncertainty allows only a small range
of values of co (—,4

~ cu ~ —,0 in the resistive case, and
3 3 .
z~

~ co ~ —,6 in the viscous case).
%e can also show rigorously, for a slightly modified

model, that the exponent ~ can never be negative.
In the modified model, we take p„Y(r) = poe"'i and

p, (r) = pe"', where h(r) is dimensionless here and

has a symmetric distribution about zero. This model is
statistically self-dual, in the sense that for any member A

of the ensemble with a local resistivity tensor p&(r), there
is another 8, having equal probability, with [ps(r)]t =
[pz(r)] '(po + p ). It can be shown that the ensemble-
averaged resistivity tensor R satisfies Rt = R '[po +
p2], which implies R„+R„=po + p . [The proof
employs a transformation analogous to that used by
Dykhne and Ruzin [10],with the choice a = c = 0, d =
b ' = (pi + p2)'i~ in Eq. (8) of Ref. [10].] Therefore,
R,„cannot diverge for p 0, and we must have ~ ~ 0.
More generally, one expects that the exponent ~ will

always be ~0 for any model where the macroscopic
resistivity is isotropic [4].

We now consider the effect of having disorder on
multiple length scales. As an extreme example, let us

consider a system that is disordered on a microscopic
length scale a (as above) and also disordered on a
macroscopic length scale a' such that a (& a' &( L, where
L is the size of the system. On scales much less
than a', the calculation described above should hold;
i.e., given a local resistivity tensor p such that p Y has
some typical fiuctuation A, and p„„=p, we can use the
above approach to calculate that the resistivity tensor p'
measured on a scale larger than g but smaller than a' is
given by p„' = p' —A' /' p /' with pzy given by the
local mean value of p,~. We can then repeat the argument
to account for disorder on the scale a' by using the tensor

p as a local resistivity. Here, we similarly find that the
macroscopic resistivity is given by R„„—A'+'3(p')3i'i—
A'~i'6 p~i'6~. Thus the exponent cu is effectively squared
if disorder exists on two very different length scales.
Clearly, this approach can be extended analogously to
account for disorder on any number of well-separated

length scales, with the result that the exponent cu can
become arbitrarily small if the disorder extends over a
sufficiently wide range of scales —i.e., if the correlations
fall off sufficiently slowly. Isichenko has previously
considered the effect of long-range correlated disorder and

has similarly found that co can be arbitrarily small for
certain correlations that fall off very slowly [4].

The hypothesis that disorder exists on several length

scales seems plausible. Although one certainly expects to
find disorder on the scale of the dopant setback distance,
there is also evidence for inhomogeneities in the electron
density on the scale of a few percent [11],and the length

scale of these inhomogeneities may be relatively large.
In this regard, it is interesting that the values of a.„„
obtained from the surface acoustic wave experiments of
Willett et aL using a conventional theoretical analysis, in

the low frequency limit, are systematically snialler by a
factor of = 3 than the values obtained from macroscopic
conductivity measurements on similar samples, over a
range of fields and temperatures. (This discrepancy was

removed by an explicit renormalization of a parameter cr

in the experimental analysis [11,12].) If the sample has
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sufficiently large density fluctuations on a length scale
large compared to the ultrasound wavelength together
with smaller fluctuations on a shorter length scale, this
could conceivably account for the observed discrepancy.
However, there remains a problem in accounting for the
experimental values of the coefficient a in Eq. (1) via
large scale inhomogeneities. Analysis by Dykhne and
Ruzin [10] in the case where p Y(r) can only take on two
discrete values, p~ and p2, gives a maximum value of
R„„equal to ~p~

—p2(/2, when the value of p is small.
Assuming this estimate to be an upper bound on R„„
for the continuum case, we see that in order to obtain a
coefficient a = 0.03, as in typical experiments [2], one
would need to have large scale density fluctuations of
order 6', which is probably unreasonably large.

If the exponent ru were precisely zero, then the resistiv-
ity law (1) would hold independent of the microscopic
details of the local dissipative resistivity (or viscosity)
so long as the local dissipation is sufficiently small. If
cu is small, but nonzero, then the accuracy of the law
will be determined to some extent by the behavior of
the local resistivity. In the high temperature regime, for
example, if the local resistivity p itself varies as B
with u = 2, then at high temperatures the macroscopic
resistivity would vary as B'

Theoretical results that in various particular circum-
stances, within the quantum Hall regime, the macroscopic
longitudinal resistivity is determined by local fluctuations
of the electron density n(r), or equivalently of the local
Hall resistance p„„(r),have been discussed previously by
a number of authors [6,10,12,13]. Much of this previous
work has concentrated on the narrow transition regions
between neighboring well-developed Hall plateaus at low
temperatures. In the present Letter, we have been more
concerned with the regime of high temperature, where

p„Y(r) may be more properly considered to be a continu-
ous function of the local filling factor and hence a con-
tinuous function of position in the sample. Moreover, we
have shown that in the high temperature regime a perco-
lation analysis of the conductivity problem may be used
to explain the empirical resistivity law (1) which should
hold particularly well if disorder occurs over a wide range
of length scales. Further analysis of the inhomogeneities
occurring in actual samples is clearly necessary to com-
plete this argument, as is a better understanding of dis-

sipation processes at the shortest length scales, which
determine p.
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