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Adiabatic Quantum Transport: Quantization and Fluctuations
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Quillen's local index theorem is used to study the charge transport coefficients (adiabatic curvature)
associated with the ground state of the Schrodinger operator for charged (spin less) particles on a closed,
multiply connected surface. The formula splits the adiabatic curvature into an explicit integral part and
a fluctuating part depending on the regularized determinant of the Hamiltonian.

PACS numbers: 72.10.8g

Some of the interesting recent developments in quan-
tum transport are connected with two complementary
phenomena: the precise quantization of certain transport
coefficients (e.g., conductance) [1] and the fluctuation of
others [2]. Normally the two are viewed as disparate phe-
nomena that have little to do with each other: They per-
tain to different kinds of physical systems and to different
notions of conductances, and the theoretical frameworks
used to describe the two seem to have little in common.

Here we shall study a class of quantum systems for
which the transport coefficients simultaneously display
quantization and fluctuation in a way that, we believe,
sheds light on both. A precise description of the kinds
of systems we consider shall be given below. For the
moment, however, these may be thought of as roughly
describing the dynamics of a Schrodinger particle on a
two-dimensional multiply connected surface which has
no boundary but is of ftnite area. We consider the
nondissipative transport in a constant magnetic field and
2h Aharonov-Bohm fluxes. Each flux penetrates one of
the fundamental loops of the surface.

There are two related notions of transport coefficients
that we consider: conductance and charge transport.
Changing one of the fluxes generates electromotive force
(emf) around the corresponding loop and as a result of
that current flows around possibly all other fluxes. In the
limit of small emf's, currents and emf's are related by the
antisymmetric conductance matrix. We define the matrix
of charge transport so that each entry in the matrix is an
integral over a pair of fluxes of the corresponding element
in the conductance matrix [formula (12)].

The tool we bring to bear is a local index theorem due
to Quillen [3]. When applicable, it splits the conductances
into two parts [formula (14)]. The first is explicit and
universal, i.e., it is—up to a factor —the canonical sym-
plectic form on the space of Aharonov-Bohm fluxes. Its
two-dimensional integrals yield quantized charge transport
(in units of e /h) and therefore provide a connection to the
integral quantum Hall effect [1,4]. The second piece in the
formula is an exact 2-form, hence it does not affect charge
transport. It affects, however, the conductance as a fluc-

tuation term. In contrast to the first one, it depends on
spectral properties of the Hamiltonian, since it is related to
an appropriate regularization of its determinant.

In systems which are classically chaotic one expects a
relation between the eigenvalues and the lengths of closed
classical orbits. This relation is exact in situations where
Selberg's trace formula applies [5] and is a semiclassical
approximation in cases where Gutzwiller's formula holds
[6]. In some special cases (see below) the determinant
of the Hamiltonian —and hence the second piece of
formula (14)—can be expressed in terms of Selberg's
zeta function.

There are several applications to this point of view; all
of them are consequences of formula (14) below: (1) All
transport coefficients associated with the ground state
for any compact Riemann surface with h handles and
sufficiently large magnetic field B are explicitly calculated.
They are 1 if the pair of fluxes is associated with
intersecting loops and 0 otherwise. This solves a problem
posed in [7], also solved, by different means, in [S].
(2) Conductance fluctuations in the ground state, in the
limit of large magnetic fields, are exponentially small.
(3) In special cases where we can apply Selberg's trace
formula, conductance fluctuations in the ground state are
related to the periodic orbits of the corresponding classical
system.

Now we shall describe the model in more detail.
Consider a charged, nonrelativistic, spinless particle on
a topologically closed surface X with h handles. Fix a
complex structure on it with local coordinate z and a
conformal metric p(z, z)~dz~2. The area element is the 2-
form o = 2pdz A dz.

The magnetic field is a real 2-form Bcr. We allow
only constant inagnetic fields (relative to o.) with total
magnetic flux 2mf = f& Ba, where f is an inte. ger.

For B fixed consider the space A. of real gauge
potentials. For any A E. W we have dA = Bcr, where
locally on X

& = & '(z, z) dz + A '(z, z)dz. (1)
To show explicitly the connection between gauge poten-
tials and Aharonov-Bohm fluxes we introduce on X a
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canonical basis of 1 cycles, i.e., simple oriented loops
y~, . . . , y2q, which consist of h disjoint pairs y,-, y, +z (one
pair for each handle) such that y, intersects y, +I, exactly
at one point. Consider the dual basis a[, . . . , a2I, of real
harmonic 1-forms on X normalized by

Qit,
=

Ajar, j, k = 1, . . . , 2h. (2)

Fix some Ao E A. ; then any gauge potential A E A. is
uniquely represented in the form

2h

A = Ao + g Pjal + i dgg (3)

where g: X U(1) is a gauge transformation. Factoriz-
ing the space A. by the action of the gauge group, we
obtain a 2h-dimensional torus 4 parametrized by the
Aharonov-Bohm fluxes.

The flux torus 4 carries natural symplectic and com-
plex structures. (Both of them are necessary to formu-
late Quillen's theorem. ) In terms of the Aharonov-Bohm
fluxes the symplectic structure is given by

II = g d@' A d@'+". (4)

To define the complex structure, consider the Hodge star
operator on real hartnonic 1-forms on X,

*(u dz + u dz) = i(u dz —u dz) .

Since +2 = —1, we can regard * as a multiplication by
i; this gives rise to a complex structure on 4 which we
denote by J. It is explicitly given by J = 0 g, where g
is the Riemannian metric on 4,

g;p = a; A +aI, .

Now we return to the discussion of particles on X in

the presence of a constant magnetic field B. The family
of Schrodinger operators we consider is defined through

the kinetic energy of a spinless particle on X including a

gauge potential A and is given by

H(Q) = (d + iA)'(d + iA) = 4D"D + B, (7)

where D = —„- + iAo' and D* = ——(—„+iAo'). The
Schrodinger operator acts on the Hilbert space H of
sections of a U(1) line bundle with the scalar product

(A, k) = f lel'~

Let us recall a few basic facts about adiabatic transport

[1,4]. Let P(@) denote the spectral projection on the

ground state of H(P) [9]. Suppose that the fluxes @'(t)
depend adiabatically on time. Then, the current around

the kth Aux is given by

cu(P, P) = Tr(PdP A dP) = Tr[P(dH)(H —E) (dH)],

(10)

where d denotes exterior derivative with respect to Aux

and dP = g(BP/B@')dg'. The hat in (H —E) excises
the pole at E (the reduced resolvent). The expression
on the right-hand side of Eq. (10) is Kubo's formula
in operator notation. In the case at hand, the adiabatic
curvature is also given by the formula [3]

cu(P, @) = Tr~ PdD*, dD
)

The integral of cu, k(P, @) over the fluxes @' and P'
has a direct physical interpretation: It is the total charge
transported around loop k (averaged over flux P") as a
result of the adiabatic increase of flux through loop j
by one quantum unit. This defines the charge transport
matrix Q,k [11]:

cup(P, Q)d@' A d@".2' 0«P~, P~ «2m.
(12)

In the situation we consider, Quillen's local index theo-
rem gives an explicit formula for the curvature form of
the so-called determinant bundle of the family of Cauchy-
Riemann operators D, parametrized by Aharonov-Bohm
fluxes @. To apply Quillen's formula to the analysis of
adiabatic curvature, notice first that by Riemann-Roch

dim ker D —dim ker D" = f —h + 1. (13)

By a standard positivity argument ker D' = 0 when f ~
2h —1. Then dim ker D = f —h + 1 is constanton the

flux space, and Quillen's theorem yields the following
formula for conductance:

1 1
cu(P, $) = — II — dJ d ln detD*D. (14)

2m
'

(2n )2 4m.

Here det D*D is defined via the zeta function regulariza-
tion. The determinant term is an exact 2-form on 4,
hence it does not contribute to the charge transport matrix

Q,q, and represents conductance fluctuations. The natural

symplectic form 0 on the flux torus depends only on the

topology of the surface and in this sense is universal. Fur-

thermore, it determines charge transport. Thus, Quillen's

theorem divides conductance into a constant and a. fluctu-

ating term.

II;(P, @) =
~ g 4'~, I;(P. 4)
j=l

Hence cu, k(P, p) is, up to a factor i, the conductance
matrix. In mathematical terms it is a component of the
adiabatic curvature 2-form cu (P, @) [10]:
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(16)

B~2,
where c~ is a constant independent of the fluxes. When B
becomes large, Z(B, x) tends to one and its derivatives de-
crease exponentially. Therefore conductance fluctuations
are exponentially small for large magnetic fields. More-
over, the leading term in the asymptotics of the fluctuating
term for large B is given by exp{—[BC(y;„)]),where y;„
is the shortest homologically nontrivial closed geodesic.
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In addition to the consequences of formula (14) men-

tioned at the beginning, we can draw the following conclu-
sions: (1) Formula (14) suggests that the behavior of con-
ductance is qualitatively more complicated for small mag-
netic fields, i.e., f = 0, 1, . . . , 2h —2. (2) Itis known that
for the special case of the flat two torus det D*D is constant
on the flux torus. Hence conductance has no fluctuating
term. This relates well to the fact that classical dynam-
ics on the flat torus is integrable. (3) More interesting is
the case of surfaces of constant negative curvature —1 and
integral magnetic field B with total flux f = (2h —2)B.
These surfaces are conveniently realized as the orbit spaces
of discrete subgroups I' of SL(2, R) acting on the upper half
plane H. In this case the determinant of the Hamiltonian
can be expressed in terms of Selberg's zeta function,

Z(s, 4) = [I —X(y. 4)e ""'"~lj . (15)
Primitivey k=0

Here y E I are primitive hyperbolic elements of I repre-
senting conjugacy classes and may be thought of as closed
geodesics on X; E(y) denotes the length of y and X(y, P)
are phase factors that carry information about the fluxes:

( 2h

X(y. l) = expt /4»nj(» ~

where n, (y) counts the number of times (including signs)
the closed geodesic y goes around the jth fundamental
loop. Here we choose Ao in formula (3) to be the canonical
connection of the Hermitian, holomorphic line bundle
(T*X) [i.e., compatible with both the metric and the
holomorphic structure in (T'X)s]. The series on the right-
hand side of (15) converges absolutely for Res & 1 and
has an analytic continuation with respect to s to the whole
complex plane. The determinant of D*D is expressed in
terms of Selberg's zeta function by [12]

detD"D = chZ(B, X), (17)
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