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Bogoliubo~ Quasiparticle Excitations in the Thoro-Dimensional t-J Model
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Using a proposed numerical technique for calculating anomalous Green's functions characteristic
of superconductivity, we show that the low-lying excitations in a wide parameter and doping region
of the two-dimensional t-J model are well described by the picture of dressed Bogoliubov quasi-

particles in the BCS pairing theory. The pairing occurs predominantly in the d ~ „2-wave channel
and the energy gap has a size Ap 0.15J—0.27J between quarter and half fillings. Opening of the
superconducting gap in the photoemission and inverse-photoemission spectra is demonstrated.

PACS numbers: 74.20.Mn, 71.27.+a, 75.10.3m, 75.40.Mg

hilation) operator at site i and spin cr (=t', J, ) allowing no
doubly occupied sites, S, is the electronic spin operator,
and n, = n, T+n, t is the electron number operator. The
summation is taken over all the nearest-neighbor pairs
(i, J') on the two-dimensional square lattice. The average
number of electrons per site n is defined with the terms
half Filling (n=l) and quarter Filling (n=l/2).

We adopt the working hypothesis that low-lying states
of the clusters can be described by the microcanonical
version of the BCS pairing theory [5]. Hence, we assume
that a cluster ground state with an even electron num-

ber N can be written as [Qo ) =P~~BCS) where [BCS) is

a BCS wave function (formulated in terms of "quasipar-
ticles" so that the effects of strong correlations are al-

ready included) and Ptv projects on the X-electron sub-

space. Similarly, we assume that the low-lying states
with an odd electron number %+1 can be written as

lQ, +
) =Pv+i7kt [BCS) where 7k creates a Bogoliubov

quasiparticle with momentum k. Then. if we define the
following anomalous Green's functions, our working hy-

pothesis predicts that they should describe the excita-
tions of Bogoliubov quasiparticles in the clusters.

The one-particle anomalous Green's function is defined

Recent issues in the theory of high-temperature super-
conductivity include the fundamental question whether
the two-dimensional (2D) t Jmode-l contains a supercon-
ducting phase relevant to cuprate materials, and if so,
what types of superconductivity the model has. There
are a number of mean-field based, variational Monte
Carlo, and other approximate calculations, but a com-
monly agreeable phase diagram has still been out of our
reach. Thus, at this stage, unbiased numerically exact
calculations of the model certainly offer important infor-
mation on this question. Among such exact calculations

[1—3], Dagotto and Riera [1] have recently found indica-
tions of superconductivity near the region of phase sep-
aration [4] by examining equal-time pairing correlations
in finite-size clusters; the existence of a d 2 y2-wave con-
densate has thereby been conjectured.

In this Letter, we propose a new technique for examin-

ing the low-lying excitation spectrum, i.e. , the exact cal-
culation of anomalous Green's functions for Bogoliubov
quasiparticles in finite-size clusters; we can thereby cal-
culate the quasiparticle excitation spectrum directly to
examine the superconducting pairing interactions in the
2D t-J model. Then, we show that the low-energy excita-
tions in a wide parameter (J/t) and doping region of the
model are well described by the picture of dressed Bogoli-
ubov quasiparticles within the BCS (Bardeen-Cooper-
Schrieffer) pairing theory: the singlet pairing of electrons
with opposite momenta occurs near the Fermi energy un-

like in the regime of Bose condensation of a gas of spin
singlets in real space. The pairing occurs predominantly
in the dz2 y2 wave channel, and the gap energy scales
with J and has a magnitude Ad 0.15J—0.27J. We also
demonstrate the opening of a superconducting gap in the
photoemission and inverse-photoemission spectra. This
work provides the first demonstration of the validity of
the BCS pairing theory for a strongly correlated electron
model.

The t-J model is defined by the Hamiltonian

as
f

o ckT H E —~t 'lt'o
%+2 1 i

0+ Fo

where c& is the Fourier transform of c,' and Ep is the
ground-state energy. We define the spectral function

F(k, io)= —(1/vr) ImG(k, io + iq) with rt=0+ and its fre-

q"ency i~t~g~al Fk =(~o [ck1c—kt ~
y)o ) The hypothes

then predicts F(k, io)=Fi,b(io —Ek) with Fi,=zkdk/2Ek
via the Bogoliubov-Valatin transformation of operators
[6], ~here zi„Ek, and Ak are the wave-function renor-
malization constant, renormalized quasiparticle energy.
and gap function, respectively. Thus, this Green's func-
tion describes the excitation of one Bogoliubov quasipar-
ticle in the cluster. Similarly. we define the two-particle
anomalous Green's function as

I

cV ~

G(k, ks. z) = 4o c—k c-k' ~ck1ci,T yo-=- —0+ Z~
&& —k$&tk&

&~kk' j

where cI (c, ) is the projected electron creation (anni-

H = t ) (c,'c, +H.c.I + 1 )—(S; S, — n;c,), —
(ij)cr &ij&
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with nk~=(Qo ~ck ck~ ~Qe ) and the ground-state energy
Ez+. Only the N-particle subspace is involved, unlike
in Eq. (1). We define the spectral function F(k, k', ~)
and its frequency integral Fj,k as above. The hypoth-
esis then predicts F(k, k', u)=FkFi', ,b(u Ek—Ek—): the
Green s function describes the excitation of two Bogoli-
ubov quasiparticles. Note that Eq. (2) may also be de-

fined with c&, and cg interchanged and with nk re-

placed by nk~=(gg~ci, ~cI, ~@oN); whe~eas no change oc-
curs in the BCS theory, some difference appears in the
calculated spectra because of the violation of the anti-
commutation relation of the constrained operators; how-

ever, we find the difference to be insignificant. Thus,
by examining these two anomalous Green's functions, we
can see if the low-energy excitations of the 2D t Jmodel-
are described by the BCS pairing theory.

The off-diagonal Green's functions Eqs. (1) and (2)
may be evaluated by subtraction of diagonal ones, which
in turn are computed in the standard Lanczos algorithm

[7]: e.g. , for the one-particle anomalous Green's function,
we prepare the state ci,l ~i)'io

+ )+ct
k& ~gg) and calculate

the spectral function, from which the usual single-particle
spectral functions for cki ~go

+
) and c &&[ge ) are sub-

tracted; thereby F(k, cu)+c.c. is obtained. The majority
of the spectral weight is canceled out; only the anomalous
part remains (compare the spectra shown below). The
imaginary part of F(k, cu) is also calculated by using the
state AT ~Qe

+ )+ict &&~gs ) and is always found to van-

ish. We use clusters of the size 4 x 4 and y 18x i/18 with
periodic boundary condition; the Green's functions are
evaluated for zero-momentum ground states to simulate
the excitations in the thermodynamic limit. The Fermi
momentum kF is located at the k points where F(k, u)
and F(k, k', u) show the lowest en-ergy peak.

The calculated results for F(k, u) are shown in Fig. 1.
We choose the average value of Eo and E0 + as the
value of Eo used in Eq. (1). We find the following, all
of which are consistent with expectations of the BCS
pairing theory: a pronounced low-energy peak appears
at kF and smaller peaks appear at higher energies for
other momenta; the weights of the peaks are consistent
with the BCS form of the condensation amplitude Fk
with a maximum at kF. The momentum dependence of
F(k, u), i.e. , the change in sign under rotation by n/2
and vanishing weight along the k~=k& line, is a clear in-
dication of d ~ „~-wave pairing. The size of the energy
gap, which may be estimated directly from the positions
of the peaks, scales well with J/t value. With decreasing
gap size, the peaks at moments other than kF lose their
weight as expected from the BCS theory. An important
consequence of d ~ „~-wave pairing may be seen in the
point-group symmetry of the ground states, i.e., an alter-
nation of the symmetry between Ai and Bi in, e.g. , the
18-site cluster for fillings of 10, 12, 14, and 16 electrons in
a fairly wide J/t region. This alternation, absent in, e.g. ,
attractive-U Hubbard clusters, suggests the picture that
electrons are added in pairs with dz~ &~-wave symmetry.
G(k, z) in Eq. (1) [and thus F(k, id)] reflects the pair-
ing symmetry via the point-group symmetries of gg and
Q&+ . Note that F(k, k', u) is defined entirely within
the N-particle subspace and thus is not affected by this
alternation; nevertheless it shows the same indication of
dz~ „~-wave pairing as F(k, cu).
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FIG. 1. Bogoliubov quasiparticle spectrum F(k, ug) for the
16-site cluster with doping between 4 and 6 holes at (a)
J/t=0. 8 snd (b) 1.5, snd for the 18-site cluster with dop-
ing between 4 and 6 holes at (c) J/t=0 4and (d) 1.5. .The
spectra at other momenta k are identical with those shown
here except the sign that follows the d 2 y2-wave symmetry;
the spectra along the line k =k„vanish exactly. kF is lo-
cated at (n, 0) in (a) snd (b), and at (2m/3, 0) in (c) and (d).
The dotted curves show the BCS spectral function obtained
for parameter values Aq/t=0. 13 in (a) and 0.29 in (b) with
t~ff/t=0. 55 and z&= 1.0, and b z/t=0. 05 in (c) snd 0.27 in
(d) with t,e/t=0. 45 and zs =0.5. We use the value ii/t=0. 15.
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FIG. 2. Bogoliubov quasipsrticle spectrum F(k, k', a) for
the 16-site cluster with 8 holes at J/t=0 4(left panel) an. d
2.5 (right panel). The momentum k dependence is shown
with k' fixed at (0, —ir/2). kF is located st (7r/2, 0) and its
equivalent points. The value il/t=0. 15 is used. The dotted
curves show the BCS spectral function obtained for parameter
values Dq/t=0 105 (left panel) s.nd 0.47 (right panel) with
t,s/t=0 55 and zs=0.7. .
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The calculated results for F(k, k', u) are shown in
Figs. 2 and 3. We again find that the size of the excita-
tion gap scales well with J/t, and the k dependence of
the spectra clearly indicates d&2 y2 wave pairing. There
are sharp peaks at low energies and broadened features
at higher energies. As is the case for F(k, ur), these high-
energy features lose their weight rapidly with decreasing
J/t, whereas the peaks at kF become sharp but remain
finite with decreasing J/t. These results are consistent
with the notion of weakly interacting Bogoliubov quasi-
particles for low-lying excitations in the BCS supercon-
ductor s.

To be more quantitative, let us compare the cal-
culated spectra F(k, a) and F(k, k', a) with the BCS
predictions for the spectral functions: the quasipar-
ticle energy EI,=/g+ EI, with one-electron energy
(g= —2t,ir(cosk~ + cosk&) —p, and gap function Ak
Ag(cos kz —cos k„) is assumed. We use the effective hop-

ping parameter t,p to take into account the quasiparticle
band narrowing. The chemical potential y, is chosen to
guarantee vanishing (k at kF. The value of A~ is then
evaluated by fitting the positions of the low-energy peaks
in F(k, u) and F(k, k', a). The renormalization factor
zB (defined by assuming zk to be k independent) is es-
timated from weights of the low-energy peaks in F(k, u)
and F(k, k', u). The parameters t,ir and z~ reflect the ef-

fects of strong correlation and imply the use of a dressed
Bogoliubov quasiparticle description. The fitted quasi-
particle spectra are shown by dotted curves in Figs. 1—3.
We find a fair agreement with the exact spectra, which
demonstrates the validity of the BCS pairing theory for

low-lying excitations in the 2D t-J model. This is also the
case at Low doping levels: both F(k, a) and F(k, k', ~'!
exhibit well-defined low-energy peaks with d~2 „2-wave
symmetry which can be fitted to the BCS spectra witli
rather small t,g and z~ values.

The estimated values of the gap parameter Ag are
shown in Fig. 4. We find that Ag scales well with J and
has the value Ag 0.15J—0.27J until reaching the region
of phase separation. The gap value is large (&0.27J)
near half filling and small ( 0.15J) around quarter fiLL-

ing. The renormalization factor varies over z~ 0.2
—1 with smaller values at low doping levels. Note that
the maximum gap energy 2A~/t 0.9 (0.5) around quar-
ter filling at J/t=2. 5 (1.5) (see Fig. 4) is significantly
smaller than the effective half-bandwidth 4t, ir/t=2. 2 es-
timated from the fitting of F(k, a) and F(k, k'. ~). Also.
at low doping levels, we note that the estimated value
2Ag 0.5J—0.6J is smaller than the efr'ective bandwidth
of 2J-4J. Thus, even near phase separation or at lou

doping levels, the superconductivity in the 2D t-J model
seems not in a limiting regime of a Bose condensate of
a gas of preformed bosons but rather in an intermediate
regime between weak and strong couplings.

The single-particle spectral function A(k, a) (see Ref.

[Sj for the definition) simulates angLe-resolved photoe-
mission (PES) and inverse-photoemission (IPES) spec-
troscopy. The calculated spectra are shown in Fig. 5,
which shows how the superconductivity sects the single-
particle excitations. We find that with increasing J/t a

gaplike feature appears at k=(2it/3, 0), which may be
interpreted as a superconducting gap as the BCS disper-
sion +Ek suggests. An associated spectral-weight trans-
fer also indicates a tendency toward smearing of the juln~

at kF in the momentum distribution function. '6'e have

also calculated the spin-excitation spectrum S(q, ~) (not
shown) and compared it with the bare susceptibility in

the BCS mean-field theory. We find overall agreement in-
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FIG. 3. As in Fig. 2 but for the 18-site cluster with 6 holes
at J/t=0 4(left panel) and. 1.5 (right panel). The momentum
k' is fixed at (0, —2x/3), and kF is located at (2ir/3, 0) and
its equivalent points. The value i//t=0. 15 is used. The BCS
spectra are for the parameter values Dg/t=0. 05 (left panel)
and 0.285 (right panel) with t,/i/t=0. 45 and z@=0.5.
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FIG. 4. Gap parameter Ad, for various J/t values and dop-

ing rates. The panel gives the number of holes (in the 16- or
18-site clusters) in the final state of the anomalous Green's
functions: odd (even) numbers imply that the results are from
the one-particle (two-particle) anomalous Green's function.
The dashed lines are a guide to the eye.
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functions for Bogoliubov quasiparticle excitations char-
acteristic of the superconducting state. The validity of
the BCS pairing theory for a strongly correlated electron
model has thereby been demonstrated for the first time.
We have shown that the pairing occurs predominantly in
the d i „~-wave channel and the energy gap has a size

0.15J—0.27J in a wide region between quarter and
half fillings.
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FIG. 5. Single-particle spectral function A(k, ~) for the
18-site cluster with 6 holes at J/t=0 4(left . panel) and 1.5
(right panel). &u is measured from the 6-hole ground-state
energy, k's are shown in the panels, and the value @=0.05
is used. The thin-dashed curves show the BCS dispersion
kEg obtained for the parameter values used in Fig. 3: good
agreement is seen near the Fermi energy while at higher en-
ergies meaningful comparison cannot be made because of the
absence of damping efFects.

eluding spectral-weight distributions and opening of the
superconducting gap: the features are well interpreted in
terms of the particle-hole excitations across the noninter-
acting Fermi surface, although at q=(z, z) the efFect of
nearest-neighbor antiferromagnetic spin correlations be-
comes appreciable in the large J/t region or at low doping
levels. Details will be discussed elsewhere.

Summarizing, we have studied the superconductivity
in the 2D t Jmodel wit-h the use of a newly proposed
technique for examining the low-lying excitation spec-
trum, i.e., the exact calculation of anomalous Green's
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