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Using an axisymmetric jet with helium at low temperature we have studied the velocity intermittency

on a large range of Taylor scale based Reynolds number R,.

The results show, for the first time,

evidence for a transition between two types of turbulence in a jet. Above the transition (R, > 180) a
clear separation occurs between small and large scales. In the intermediate range, the existence of a
Reynolds dependent scaling law is confirmed. It illustrates the way in which viscosity can have some
influence up close to the integral scale in developed turbulent flows.

PACS numbers: 47.27.Gs, 92.60.Ek

One central question of developed turbulence is
whether there is a unique universal behavior or whether
there are transitions between different kinds of high
Reynolds number turbulence. The major difficulty in
studying this question is that usually one experimental
system gives access only to a limited range of Reynolds
numbers. Physicists are forced to compare results from
different experiments like grid, jets, and tunnel flows with
the hope that the Taylor scale based Reynolds number R
is the unique and universal parameter for turbulence [1].

Cryogenic experiments with gaseous “He [2] offer the
possibility of covering a large range of R, with a fixed
geometry. Helium gas has the smallest known kinematic
viscosity, » = 2 X 1078 m?/s, close to the critical point
(2.2 bars, 5.2 K) and can be an appreciably viscous fluid
at low pressure, P (vP = const) [3]. We have constructed
the first open flow working in such conditions with an
axisymmetric jet. We have developed the corresponding
anemometry technics [4]. In the following, we present
briefly the experimental setup and the anemometer. Then
we discuss the first results which concern the velocity
intermittency at inertial scales in developed turbulence.

The experimental system consists of a chamber (Fig. 1)
immersed in a liquid “He bath which also acts as a ballast
for the working gas. After laminarization, this gas enters
the chamber through a contracting nozzle of section ratio
100 (¢ = 2 mm). The jet develops downward in the
chamber, which is pumped to ensure the circulation. The
return flow is isolated from the jet by a jacket.

An on-scale reproduction of the chamber has been
made of glass to work with dyed water at room tempera-
ture. It showed that a grid was necessary downstream
before the jet developed up to the walls: In the absence
of the grid, the jet randomly attached to the walls. We
have visually checked to see that the grid introduces
no perturbation upstream and that no secondary flow is
visible.

Our anemometer is an adaptation of the hot wire tech-
nics using superconducting materials. For more details
see Ref. [4]. Its typical space resolution is about 10 um.
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The wire is operated at constant resistance (‘“‘constant
temperature”) through a homemade 10 MHz lock-in am-
plifier, and the total response time to a perturbation can be
less than 1 wus depending on the loop gain [4]. The volt-
age signal is recorded through a 12 bit HP5183 driven
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FIG. 1. Experimental setup: (1) gas injection, (2) laminariza-
tion honeycomb, (3) nozzle, (4) detector, (5) stabilization grid,
(6) pumping exit, (7) pressure measurement, and (8) symbol for
thermometers.
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by a McQuadra 700 computer. The average signal is
about 3.5 to 5.5 V, and the instrumental noise is about
1077 V2/Hz. The calibration of the wire has been made
in the potential cone of the jet as described in Ref. [5].

The probe is placed on the axis of the jet at a
distance of 50 times the nozzle diameter (2 mm), 7 cm
above (before) the grid. At this distance, the diameter
of the jet is about 3 cm, and the diameter of the jacket
is 13 cm. The mean velocity U, the turbulence ratio
(~25%), and the dissipation are in agreement with those
commonly observed [6]. It is traditional [1] to study the
inertial scales intermittency by looking at the statistics of
velocity differences dv between two times on the same
probe. This time lag 7 is labeled as a distance r = U,
invoking the Taylor frozen turbulence hypothesis. This r-
T correspondence gives reasonable values for instance for
the integral scale L (L = 1 = 0.2 cm, independent of the
Reynolds number). It has only a qualitative importance
in our analysis.

For every Reynolds number 107 data points were
recorded in the form of 20 records of 5 X 10° points.
Between two records a few seconds were needed for
the transfer of data. A typical sampling frequency at
R, = 700 is 6 X 10* Hz, and the whole recording time
is less than 10 min.

Next, we want to present the first results of our system.
We investigate the shape of the probability density
function (PDF) of dv as a function of the scale r at
different Reynolds numbers. We discuss it in terms of the
parameter A%(r) whose physical meaning is proportional
to the number of energy cascade steps down to the
considered scale r [7].

It is now well known that the shape of these PDF
depends on the scale r. It goes from a nearly Gaussian
shape at large scales L to a nearly exponential shape at the
small (Kolmogorov) scale 5, where viscous dissipation

occurs [1]. The PDF at scale r can be written in a
normalized way:
—r,(2), )
o, o,

which defines the function P,(g? = (Sv?)). It has been
shown [8] to be both useful and physically sound to
represent this PDF as the superposition of large scale
ones:

1p (6”> = f G, (ino) L P, (§3> dino.  (2)
g
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This allows us to simply review the various approaches to
intermittency. In the Kolmogorov-Obukhov theory [1,9],
G, is Gaussian:

B 1 B In? (o /o)
Grlino) = o 7 CXP[ { 242 H ®

and A? is proposed to be linear in Inr. In the multifractal
theory [10] o is proportional to r” and the distribution of
o comes from the fractal distribution of exponents s [11].
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In any case the shape of P, is mainly determined by
((8Ino)?) (i.e., by the width of G,). As shown in previous
papers [7,12], this allows one to measure this important
parameter in the following way: As the shape of G,
has a poor influence, we use a Gaussian ansatz [Eq. (3)]
and calculate a model distribution P,: (6v/o,) through
Eq. (2) [13]. We then search for the parameter A?> which
makes the shape of P): fit the shape of the experimental
distribution P,. It has been shown [7] that, to a good
accuracy,

A2 = ((81no)?).

Figure 2 illustrates the assertion that the shape of P,
depends mainly on A%2. PDF corresponding to various
Reynolds numbers and various scales r, but having the
same measured AZ, have been plotted versus v/o,. The
difference between them is small. Also shown, by a solid
line, is the model distribution P,:.

Next we are interested in characterizing the changing
shape of the PDF with the chosen scale r, i.e., we
investigate the r dependence of A2. Within the energy
cascade picture, the measured A? [that is, {(§Ino)?)] can
be interpreted as proportional to the number of cascade
steps [7,11]. It has been shown in several flows [12,14]
that the A% behavior vs r might be closer to a power
law A2 « r~# than to the Kolmogorov-Obukhov law A?
In(L/r). In order to firmly establish the validity of the
former law on pure experimental grounds we differentiate
InA? vs Inr. This is possible thanks to the quality of
our determination of A by systematically minimizing a x?
quantity [7].
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FIG. 2. Probability density functions of §v, (normalized to its
standard deviation) for different R, and the same A? parameter.
The open symbols correspond to the following parameters (7
is the Kolmogorov dissipative scale): triangle, Ry = 90,r =
207; circle, R, = 161,r = 247; diamond, R, = 328,r = 247%;
square, R, = 598,r = 627. The solid line presents the calcu-
lated PDF with A2 = 0.09.
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We estimated the error bar on the derivative in the
following way: One of our 10’ measurements recording
was cut into 10 samples of 10° measurements each. The
derivative dInA?/dInr was estimated for each of these
samples, and the distribution of the obtained values gave
an estimate of the random error. This error can be written

as
dnA?
A ( dlnr ) B

where SlInr is the step taken in the calculation of
the derivative and A (10%) = 6 X 1073 is measured. We
consider that using the whole 10’ measurement recording
is equivalent to averaging, and we estimate A(107) =
2 X 1073

Figure 3(a) compares a Kolmogorov-Obukhov analysis
and a power law analysis for A2 at R, = 328. We see, as
in previous studies [12,14], that a power law allows one to
fit a wider range than a logarithmic law. The implications
of this result are lengthily discussed in Refs. [12] and
[14], and we focus here on the experimental evidence.

A(109)
AdInr’

0.20 R X SO

o °°
C * R ) 4 -20
o1s | N\ o In(7)
X i % \
[ a2 %,
[ * \ < 3.0
010 | ° AN =
r . ?
© -
: \” o -4.0
005 \ -
- °
L o - -50
*
0.00 AN N A . #
1 10 102 103
r/m
0.5 _U M T ! I ]
[ o ]
~ 00 ¥ 7]
> ? o° o 4
£ o i
° e ?‘b% 2D @300 e % o
=~ - A4 An 9000000000090 000 % ]
= i gz?ooooo% 30 2 1
< r ]
£ 1 L “a oo"‘.’o *a ki
-1.0 a °
© 3 A o ° . 1
r a °eo° )
15 [l . ST O - S
10 102

r/m

FIG. 3. (a) Dependence of A% on r for R, = 328. The
solid diamonds correspond to a logarithmic linear presentation,
whereas the open diamonds correspond to a double logarithmic
presentation. (b) d1nA?/dInr as a function of r for different
R, values. (The different symbols present the same parameters
as in Fig. 1.)

The derivative of InA? vs Inr for several representative
Reynolds numbers is shown in Fig. 3(b). This new
analysis demonstrates the existence of plateaus for the
largest R,, which experimentally proves the validity
of the power law. For instance, for R, = 328, the
plateau extends from r = 157 = 320 umto r = 1009 =
2.2 mm that is close to the largest eddy size (7 is the
Kolmogorov length, the integral scale is 1 cm).

Based on the established power law scaling of A2 with
r, it is now possible to characterize with only one expo-
nent B the whole statistics of the turbulence within the
scaling range [14]. The exponent B, which is the value
of the derivative —d InA%/d Inr in the plateau region, has
been measured for a whole range of Reynolds numbers
and compared to previous measurements. Following the
proposed scaling of B [14], we plot, in Fig. 4, 1/8 vs
InR,. Good agreement is found with other jet experi-
ments.

Coming back to Fig. 3(b), it is obvious that the plateau
disappears for the lowest Reynolds numbers. This shows
the existence of a transition by which the flow goes
from a “hard turbulence” [15] in which the inertial range
could be assimilated to the plateau region to a “soft
turbulence” state in which no inertial range is evidenced.
This transition occurs for R, = 180 * 40, which explains
why we report no value of B8 under this threshold (Fig. 4),
while we made experiments down to R, = 90. Curiously
the grid experiments referred to in Fig. 4 give a value of 8
for Reynolds numbers under the transition. A possibility
thus exists for the position of this transition being flow
dependent.

As often, the nature of the transition gives a hint of
characterizing the turbulent states above and below. At
low R,, the evolution is continuous from small scales
to large ones. The soft turbulence could be said to be
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FIG. 4. Inverse of the scaling exponent B as a function
of R). Open circles are results from our jet experiment.

The solid squares (see Ref. [14]) correspond to analog results
of several different experiments, for which the four middle
ones correspond to air jets, and the two smallest ones in R,
correspond to a grid flow.
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dissipative in nature. At large R,, the plateau introduces
a clear separation between dissipative scales and large
(inviscid?) scales. The plateau extends up to scales in
the neighborhood of the integral one. The value of B is
R, dependent, which shows how the viscosity can have an
indirect influence far from the dissipative scales.

Looking at Fig. 3(b), we note further that it suggests
an analogy with isotherms of a thermodynamic liquid-
gas system. The transition would be the analog of the
critical point, and In(L/r) takes the place of the volume.
A% would be the equivalent of the partition function Z
in statistical mechanics, and InA? is proportional to the
“free energy.” If this interpretation is correct, it means
that the power law behavior for A? vs r results from
a convexity condition for InA? vs Inr. A theoretical
justification for such a convexity would result in a great
step in our understanding of intermittency. We shall not
develop this analogy here [16]. Let us, however, remark
its coherence with what is said above: It implies indeed
that an equilibrium exists between the large, turbulent
scales and the small, dissipative ones. This equilibrium
governs the whole organization of the intermediate scales.

In conclusion, we have built an original jet experiment
allowing a broad variation of Reynolds number at con-
stant geometry. With this apparatus we have shown for
the first time that the inertial range appears in a turbulent
jet flow through a well defined “second order” transition
(analogous to a critical point). Two important character-
istics of our experiment allowed for the discovery of this
transition. First, this is due to the precision of our A?
measurements. This quantity (which is intuitively pro-
portional to the number of energy cascade steps) appears
as one of the finest in characterizing intermittency. Sec-
ond, the possibility to span a large range of R, at con-
stant geometry was essential to understand the nature of
this transition. It seems to be that by which an inertial
range appears. Above the transition, viscosity has some
influence much beyond the Kolmogorov scale, up to the
neighborhood of the integral scale. This is of prime im-
portance for characterizing flows when the small scale
resolution cannot be reached, for instance in the large
eddy simulations.
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