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Crossover from High to Low Reynolds Number Turbulence
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The Taylor-Reynolds and Reynolds number (Re& and Re) dependence of the dimensionless energy
dissipation rate c, = eL/u&, is derived for statistically stationary isotropic turbulence, employing the

results of a variable range mean field theory. Here e is the energy dissipation rate, L the (fixed) outer

length scale, and u&, a rms velocity component. Results for c,(Re„) and also for Re„(Re) are in good
agreement with experiment. Using the Re dependence of c, we account for the time dependence of the

mean vorticity tp(t) for decaying isotropic turbulence. The lifetime of decaying turbulence, depending
on the initial Re& p, is predicted to saturate at 0.18L /v ~ Re& p (v the viscosity) for large Reg p.

PACS numbers: 47.27.Gs

Dimensional analysis has proven to be a powerful tool
in turbulence research, giving a number of key features
of turbulent spectra [1,2]. The main idea is to connect
small scale quantities such as the energy dissipation
rate e with the large scale quantities such as the outer
length scale L and a rms velocity component, u&

More precisely, following Richardson's cascade picture
of turbulence [2,3], it is argued that for fully developed
turbulence

e = coul rms/L (1)
holds, where c, is a dimensionless constant in the range
of 1.

However, it is not clear, for what Reynolds number Re
the large Re limit (1) is reached. For small Re the dimen-
sionless number c, clearly depends on Re. For example,
for plane Couette flow with shear 2u~, /L in one direc-
tion we have c,(Re) = 4/Re. Here and henceforth, fol-
lowing Sreenivasan's [4] collection of measurements for
grid turbulence, we defined the Reynolds number Re as

Re = Lu~, /v, (2)

where v is the viscosity and L is the longitudinal integral
scale as in [4]. Even for large Re it is not clear whether
the Re dependence of c, vanishes, though Ref. [4] favors
c, = const for high Re.

Another way of expressing the physical contents of
(1) is to give the Re dependence of the Taylor-Reynolds
number Re& = Au~, /v, where A = u&, /(B~u~), is
the Taylor microscale. With e = 15v(B&u&)2 „valid for
isotropic turbulence [2], and Eqs. (1) and (2) we get

Re~ = 15Re c, Re . (3)
If we have c, = const for large Re, we thus also have
Re„~ /Re.

In this Letter we will first derive explicit expres-
sions for c,(Re) and c,(Req) for unbounded flow.
They depend only on the Kolmogorov constant b,
which is experimentally known to be between 6 and
9 [5—7]. We will start from the results of the vari-
able range mean field theory [7], which embodies the
Navier-Stokes dynamics, yet neglecting intermittency

effects [8]. We thus offer a way to go far beyond
dimensional analysis. In the second part of the Letter
we apply our results to decaying turbulence, which
has recently been experimentally examined and ana-

lyzed by dimensional analysis by Smith, Conelly, Gold-
enfeld, and Vinen [9]. Both our results for c,(Req) and
for the time dependence of the mean vorticity to(t) in

decaying turbulence are in good agreement with experi-
mental data.

We start from the final result of Effinger and Gross-
mann's variable range mean field theory [7]. For homoge-
neous, isotropic turbulence a differential equation for the
velocity structure function D(r) = ([u(x + r) —u(x)]2) is
derived [7], namely

3( D(r)11 d
e = —

I
v+

I

——D(r).
2& b3e) r dr

(4)

For small r the solution is D(r) = er2/3v, whereas
for large r we get the well-known Kolmogorov result
D(r) = b(er)z/s The Ko. lmogorov constant b can be
calculated within the approach of Ref. [7]; b = 6.3 is
obtained. Equation (4) is an energy balance equation.
The first term in parentheses corresponds to viscous
dissipation; the second one can be interpreted as eddy
viscosity. Equation (4) constitutes some kind of closure
of the Navier-Stokes dynamics. Other kinds of closure
are possible and will lead to quantitatively only slightly
different results.

Integrating the differential equation (4) from 0 to the
outer length scale L we get

D (L) + 3b evD(L) —b e L = 0. (5)

Here we have assumed that (4) holds for all r up to
r = L. If L is large enough and the How is isotropic,
it is D(L) = 2(u2) = 6u~, . With Eqs. (1) and (2) the
quadratic (in e) Eq. (5) can be written in dimensionless
form as c2 —18c,/Re —(6/b)3 = 0, which is easily
solved to give

&3b'&'" 1 3b3 1c,(Re) = c, + 1 + . . (6)8) Re 8 Re2
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The dependence of c, on the Taylor-Reynolds number
Re~ can be obtained from Eqs. (3) and (6),

5 b-'
c,(Re~) = c, 1 +—

4 Rep
(7)

In both formulas we have introduced c, = (6/b)3/2 only
for convenience; the Re and Req dependences are purely
determined by the Kolmogorov constant b.

For large Re or Req, the function c,(Req) indeed
becomes constant, c,{Req) = c, = {6/b)3/, as Sreeni-
vasan finds for grid turbulence with biplane square mesh
grids [4]. The experimental value c, = 1.0 is only at the
borderline of the numeral value c, = 0.54—1.0 (for b =
9 —6) of our prediction. The reason for this is likely due
to nonuniversal boundary effects. We have assumed (4)
to hold up for all r up to r = L; thus D(L) = 6u& ~, =
b(eL)2/3, which already results in c, = (6/b)3 2. Yet
for r around L, D(r) will not scale as D(r) = b(er)2/3
and we have D(L) ( b(eL)z/' This . nonuniversal bound-
ary effect might be treated by introducing an effective
geometry b{'rti & b instead of b in Eq. (5), defined by
D(L) = b{' ~i(eL) / [Note. that an introduction of bt"i
already in (4) is inappropriate, as boundary effects should
not be seen in D(r) for small r.] To get the experimental

c, = 1.0, one should have bi't'i = 6/c, , = 6 ~ b.2/3

The curve c,(Req) is plotted in Fig. 1, together with
Sreenivasan's experimental data for grid turbulence. For
Re& = 50 the function c,{Req) saturates at c, , in good
agreement with the data.

For really stnall Re Eq. {6) can —strictly speaking-
no longer be applied, as laminar flow is never isotropic,
whereas Eq. (4) holds only for turbulent, isotropic flow.
Note that Fig. 1, starting with Req = 5, does not include
the laminar case (as seen from the inset), since in laminar
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FIG. 1. c,(Re„) for b = 6 (upper dashed) and for b = 9
(lower dashed) according to Eq. (7), compared with Sreeui-
vasan's collection of experimental data [4]. The solid line
shows the normalized curve c,(Re„)/c, (for b = 8.4), which
can be compared with the same experimental data points as the
experimental c, equals 1 [4]. The normalization leads to bet-
ter agreement with the data for small Re&. The inset shows
Re&(Re) according to Eqs. (3) and (6). The crossover from
the laminar scaling Re& ~ Re to the turbulent range scaling
Re„~ ~Re takes place at Re& „=22. Re = ———c,{Re)Re2.

I 2 (9)

flow Re~ loses its meaning. If we perform the small
Re limit Re « $3b~/8 = 14.9, Re& && $5b3/4 = 27.2;
nevertheless, we can get c,(Re) = 18/Re, independent of
b, as expected, since b characterizes the highly turbulent
state. (Here and in what follows, we took b = 8.4,
which is given in [7] as the experimental value. ) The
~ Re ' dependence is correct. The prefactor 18 is-
again, as expected —too large, if compared to the highly
anisotropic laminar Couette flow with shear in only one
direction, see above. In more isotropic laminar flow, e.g. ,

in flow with shear in three directions, the agreement for
small Re will be better.

Equations (3) and (6) give the function Req{Re),
see inset of Fig. 1, which strongly resembles the lat-
est experimental measurements for grid turbulence by
Castaing, Gagne, and Marchand [10]. Also Grossmann
and Lohse obtain a similar curve Req(Re) from a
reduced wave vector set approximation of the Navier-
Stokes equations [11]. Here, for large Re we have
Req = $15(b/6) / /Re = 5/Re. For small Re it
is Re& = $5/6Re. Extrapolating these two limiting
cases, the crossover between them takes place at
Re„= 18(b/6)3/2 = 29.8, corresponding [via Eq. (3)] to
Re& „., = 21.6, which seems very realistic to us.

Up to now we applied our theory to statistically
stationary turbulence. But it also offers an opportunity
to analyze decaying turbulence. Most experiments on
decaying turbulence have been performed in wind tunnels

up to now, where the distance from the grid gives the
decay time t, if the mean velocity is known [12]. In
this kind of experiment the outer length scale L grows
with time t, as the wake behind the grid becomes wider
with increasing distance. Yet in a very recent new

type of experiment performed by Smith et al. [9], L
can be kept fixed. In that experiment a towed grid
generates homogeneous turbulence in a channel filled
with helium II. The decay of the mean vorticity cu(t) is
measured by second sound attenuation [9,13]. As in [9]
we assume that Navier-Stokes dynamics can be applied to
this fluid.

In the theoretical analysis of this experiment, for very
high Reo = Re(t = 0), Redo = Req(t = 0), the quantity
c, can be considered constant. But the smaller Re(t) or
Re&(t) become with increasing time t, the more important
are the corrections seen in Eqs. (6) and (7). The total
energy (per unit mass) of the flow is F. = u2, /2 =
3u~, /2. The decay of the fully developed turbulence
is governed by the differential equation

+i,rms & 2 & (t)
e = c, I'™= c,[E(t)] ~—

L (3 I
= -&(t) (8)

The outer length scale L is fixed, as in the experiment
we are referring to [9]. We change variables to Re(t) =
Q2/3LQF(t)/ p and obtain
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Integrating Eq. (9) with the initial condition Re(t = 0) =
Rep gives the time dependence Re(t) of the Reynolds
number,

r ce 3 Re() yX + xQx +
Here, for simplicity, we have introduced the viscous time
scale r = L2/v and the constant y = $3b3/8 = 9/c,
14.9. The integral can be calculated analytically. We
define the indefinite integral as

F(Re) = ' —y + y' + Re2 1
1 I

2Re2 i 1

Re2
+ ln (11)

2y Re
Thus the time dependence of Re(t) is given by the inverse
function of

t(Re)/r = 3[F(Re) —F(Rep)]/c, . (12)
All quantities on the right-hand side can be expressed in
terms of the Kolmogorov constant b.

Imagine now the limiting case of large Rep and
also large time, but Re(t) & Rep still large, i.e., t not
too large. For large Re both terms in (11) contribute
(2Re) '[1 + O(y/Re)]. Thus F(Re) = 1/Re and from
(12) we explicitly get

1 c,, t&' 3
Re(t) =

i
+ '" —

i

=
(

—
i

. (13)
(Rep 3 r ) c,, kw)

In Fig. 2 we plotted Re&(t), calculated from Eqs. (3)
and (12), for several Rep. The scaling law Req(t) =
3~5(t/r) '/c, [corresponding to (13)] starts to be
observable only for Rep = 10', i.e., Regp 156.

In the final period of decay, i.e., for very large t
[large enough so that Re(t) « y], we get Re(t) = 2y~e
X exp( —6t/r) and E(t) = (9/4)ebsv2L exp( —12t/r).
An exponential decay for very large t also holds for
decaying turbulence with growing outer length scale L(t)
[12].

To compare our results with the helium II experiment
[9],we have to calculate the mean vorticity cu(t). Vortic-
ity always causes strain in the flow. It can be shown [2]
that veau~ = e. Thus vip = e = E= —3v R—eRe/L .
With Eq. (9) we get

ctc(t) = Re/Rec, (Re)

gc, Re(t)/y + )(y + Re (t), (14)
where the universal law on the right-hand side depends
only on the Kolmogorov constant b and on the time t.

Next, we estimate the lifetime ti of the decaying tur-
bulence. For this purpose we calculate how the Kol-
mogorov length [2] rt(t) = [v3/e(t)]'i = gv/cu(t) de-
pends on time t. Of course, rl(t) will increase with time,
as the turbulence becomes weaker and weaker. The be-
havior can be obtained from Eqs. (14) and (12) for any
Rep. If Rep is large enough, scaling rt(t)/L ~ (t/r)3t can
develop.
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FIG. 2. Time dependence of the Taylor-Reynolds number
Re&(t) for freely decaying turbulence with fixed outer length
scale for different Rep = 10, 10, 10, 10 (Re„o = 1.58 X
10', 4.98 X 10', 1.58 X 10', 498), left to right, ef. Eqs. (3),
(11), and (12) with b = 8.4. The dashed line denotes the
lifetime tI, i.e., the time when viscous effects start to dominate,
see text. The inset shows the Re~0 dependence of the lifetime
t( of the turbulence, calculated from Eqs. (15), (11), and (3)
with b = 8.4.

ti(Re )p/r = 3[F(Rei) —F(Rep))/c, (15)

We plotted ti(Reqp) in the inset of Fig. 2. For small

Reqp the lifetime ti(Reqp) grows logarithmically with

Reqp. For very large Repp it saturates at ti(Reqp) =
3rF(Rei)/c, = 0.18r; i.e., it becomes independent on
Rep, if measured in time units of r = L2/v. The lifetime,
if measured in seconds, of course increases ~ Rep ~
Reqp in the limiting case.

Finally we compare with the data of the helium II
experiment [9]. First we have to embody the boundary
effects, as they should be larger in the helium II experi-
ment than in grid turbulence, because the turbulence

decays in a tube. Indeed, in Ref. [9]c,, = 36.4 is given
(off)

[using our definition of c„Eq. (1)], corresponding to
bi' l = 6/(c, )2t = 0.55.

Using this b~"i instead of b (or y't', cR, , re-(eff)

spectively) in Eqs. (11) and (14), we plotted cu(t) in
Fig. 3, together with Smith et al. 's experimental data [9].
The two curves show the same features. For small t
there is no power law. For medium t the theory gives
res(t) = 3 i (t/r) i /c~, The power law. exponent

How do we define the lifetime ti of the turbulence'? As
the crossover in the structure function D(r) between the
viscous subrange and the inertial subrange happens at
r = 10rt [7), we define the lifetime t& by the condition
10r?(ti) = L. A Reynolds number Rei is associated with
this time t( via Eqs. (14) and the definition of r?. We
calculate Re( = 20.3, Req i

= 16.0, which is, as it should
be, near to the viscous-turbulent crossover in the curve
Req(Re), which occurs at Re„= 29.8, Req„= 21.6; see
inset of Fig. 1. With this definition we obtain the lifetime
ti of the decaying turbulence for any given Rep [or, via
(3), Repp] as
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FIG. 3. Time dependence of the mean vorticity cu(t) from the
experiment of Smith, Donelly, Goldenfeld, and Vinen [9] for
Re~0 = 634, solid line. In that experiment L = 1 cm, p =
8.97 X 10 s cm2/s, so that r = L2/p = 1.11 X 104 s. The
dashed line is our prediction for cu(t) according to Eq. (14)
with b'"' = 0.55. The corresponding lifetime tI = 0.013r =
140 s is given, too.

—3/2, which is clearly seen in the experimental data, has

already been derived by dimensional analysis [9]. But in

theory the —3/2 power law for to(t) extends much further
than observable in experiment, because the experimental
noise hinders observation already for t & 10 s. For fur-

ther comparison a reduction of the experimental noise is
essential. Experiments with dramatically increased sensi-

tivity of the detectors are in progress [14].
The theoretical lifetime tI of the decaying turbulence

(calculated with b('ttl = 0.55) is tI = 0.013m = 140 s,
much larger than the 10 s in which the ro(t) signal can
be measured. Thus viscous effects, arising from the Re
dependence of c, for smaller Re, see Eq. (6), only become
important for a time tI » 10 s. So the slight decrease
in the measured to(t) signal for t~ = 10 s is not due to
them, as one might have thought, but possible due to the

uncoupling of the normal and superfluid components of
helium II (which was used as the fluid in the experiment

[9]),as speculated in [9].
We summarize our main results. We first calculated

the functions c,(Req) and Re&(Re), Eqs. (3), (6), and

(7), from a variable range mean field theory [7], which

goes far beyond dimensional analysis. We then applied
our results to decaying turbulence, highlighted by the

expression for the time dependence of to(t), Eq. (14). All

results are in good agreement with experiment. To even

improve the agreement, future work has to be done to
embody nonuniversal boundary effects in this approach.
A way to do so is to introduce bt"I instead of b in Eq. (5).

Alternatively, one could get rid of the boundary effects
by calculating a high passed filtered velocity field from
the experimental data, so that the nonuniversal effects are
filtered out.
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