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White Holes in the Fresnel Zone Causing Ambiguous First Arrival Time Tomography
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It is shown that complete and precise first arrival time tomography data are not capable of uniquely
reconstructing certain realistic velocity distributions. The nonuniqueness is demonstrated by different
velocity distributions that share identical first arrival time data. In these examples, the combined Fresnel
zone for all source and receiver combinations do not cover the entire imaging region and leave there
uncovered regions we call white holes.

PACS numbers: 43.35.+d, 42.30.Wb, 87.59.Fm

The goal of first arrival time tomography is to infer the
velocity distribution within a bounded region from first ar-
rival time measurements performed at the boundary of the
region. This method of probing an inaccessible medium
is used in medical imaging, geophysical imaging, and the
nondestructive testing of materials and processes. These
applications demand and deserve tomography results that
correspond to reality, i.e., adequately approximate the
true velocity distribution within the probed region. Any
ambiguities resulting from this imaging method must be
analyzed and reported in order to avoid erroneous inter-
pretation. In this Letter we demonstrate that the recon-
struction of the velocity distribution from complete and
precise first arrival time tomography data is generally not
unique. This nonuniqueness can lead to ambiguous first
arrival time tomography interpretation. Nonuniqueness
caused by different parametrization of the unknown veloc-
ity distribution and by incomplete and imprecise first ar-
rival time tomography data will not be treated here. This
allows the separation of the nonuniqueness of the inverse
problem into component parts by studying first the intrin-
sic features of the inverse problem with complete and pre-
cise data and then dealing separately with how the other
sources of nonuniqueness make the task of inferring the
velocity distribution even more difficult.

Our study of the nonuniqueness of the inverse problem
of first arrival time tomography with complete and precise
data is performed without using any inversion algorithm.
This allows us to draw conclusions about the inverse prob-
lem without any interference from the particular inversion
algorithm used in the reconstruction of the velocity dis-
tribution. We note, however, that an inversion algorithm
may introduce additional sources of nonuniqueness, i.e.,
by producing a velocity distribution corresponding to a
local rather than a global minimum in the misfit measure
between the measured data and the data corresponding to
the reconstructed velocity distribution.

The practical inverse problem of first arrival time to-
mography is often formulated as a nonlinear optimization
problem. The results from our nonuniqueness study can

be used to explore the existence of distinct global min-
ima in the associated nonlinear optimization problems.
As will be shown in this Letter, such distinct global min-
ima exist with zero minima, i.e., different velocity distri-
butions that share identical first arrival time tomography
data.

In the short wavelength limit, the first arrival time is
modeled by the value of the line integral of the slowness
(reciprocal velocity) along the first arrival ray joining
the source and receiver. Complete first arrival time
tomography data [1]consist of the first arrival time for all
possible source and receiver combinations at the boundary
of the probed region. It is usually assuined that complete
and precise first arrival time tomography data uniquely
determine the velocity distribution. This assumption is
based on the premise that complete first arrival time
toinography data are produced by rays that cover the
entire probed region. When diffraction [2] contributes to
the first arrival rays, certain regions we call white holes
are not covered by any first arrival rays. Under certain
conditions, the complete first arrival time tomography data
are independent of the velocity distribution in the white
holes, and this leads to nonuniqueness and erroneous
interpretations.

This fundamental ambiguity is quantified next by us-

ing two specific examples in 2D, as shown in Fig. 1 (top
panels), where both examples contain a uniform slow ve-
locity anomaly relative to a uniform background velocity.
The first arrival ray, joining the source S and receiver R,
will be the diffracted ray [3] that touches the exterior side
of the boundary of the anomaly, and not the refracted ray
through the anomaly, provided that

cc/c; ) 0.5 )(tr —i + grrr —i + arccin(1/g)

+ arcsin(1/ri) + 2 —g —ri

is satisfied for the circular anomaly, provided that

c /c;)0.5~)//i + ) +)inc + ) +2 /) rcl (2))
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with respect to the boundary of a circular probed region
of radius h and r « h for the circle [4] and a « h for
the square, then nonuniqueness can exist for extremely
low contrast in velocity, provided that c„/c;) 1 + r/2h
for the circle and co/c; ) 1 + a/2h for the square.

So far we have dealt with the fundamental ambiguity of
first arrival time tomography in 2D by using rays of zero
thickness. Under certain conditions these mathematical
rays produce a white hole in the imaging region. Here
we demonstrate the effect of frequency, within the short
wavelength limit, on the white hole, by constructing the
Fresnel zone [2] associated with the first amval rays
for the square anomaly (top right panel in Fig. 1). Any
position X within the Fresnel zone of the first arrival ray
associated with the source position X, and the receiver
position X„satisfies the inequality

0.0 0.2 0.4 0.$ 0.8 I.O 0.0 0.2 0.4 0.$0.8 I.O
r/h 0/h

CI CI

P4 CI-

C- C'I-

n
CI
CI
CI

n
CI
CI
Cl

I I ~ I
0.0 0.2 O.I 0.$ 0.8 1.0 0.0 0.2 0.4 0.$0.8 l.O

r/hl 0/hl
FIG. 1. Top panels show the geometry for the circle and
square anomalies. Middle panels represent hl = h = h2, where
the white zone corresponds to diffracted first arrivals and
the black zone corresponds to refracted first arrivals. Bottom
panels represent h, 4 hz, where the contours start with c„/c;=
1.05 at the bottom left of each panel and increase upward by
increments of 0.05.

is satisfied for the square anomaly, where ( = h|/r, g =
h2/r, P =

h1 /a —1, p, = hz/a —1. These equations
were derived from the travel time for the diffracted and
refracted rays. The conditions (1) and (2) are displayed
in Fig. 1 for hl = hq (middle panels) and for hl 4 h2

(bottom panels) for the circle (left) and for the square
(right). When complete and precise first arrival time
tomography data is available on the boundary of a circle
of radius h centered at either the circle or the square
anomaly, then the white zone in the middle panels is a
nonuniqueness zone where white holes live. The black
zone in these panels is a uniqueness zone where white
holes do not exist. Lowering the velocity distribution
in the white holes will not change the first arrival time
tomography data. Unique reconstruction of the velocity
distribution in the white holes is thus impossible, and,
consequently, the interpretation will be erroneous.

When c, /c; ) vr/2 for the circular anomaly and

c„/c;) 2 for the square anomaly, the nonuniqueness
exists, and it is independent of a and r and the position
of either anomaly. When either anomaly is symmetrical
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FIG. 2. (a) Combined Fresnel zones for decreasing contrast
(left to right) and decreasing frequency from 4f (top) to f
(bottom). Here c;/c„has the value 0.5 (left), 0.75 (middle),

1

and 0.85 (right). The size of the square anomaly is —, of the
size of the concentric boundary, i.e. , a/h = —, . (b) Combined
Fresnel zones as in (a) but for a smaller size square anomaly,

li.e. , a/h = 9.

T(X„X)+ T(X„,X) —T(X, , X„)( 0 5/f, . (3)

where T(A, B) is the first arrival time at B due to a source
at A, and f is the frequency. Figure 2 shows the Fresnel
zone for the square anomaly for six combinations of
sources and receivers at the boundary of the probed region
which is also a square but larger than the square anomaly.
Figure 2 contains two groups where the size of the square
anomaly decreases from group 2(a) to group 2(b). There
are six panels in each group where the top three panels
represent frequency 4f and the bottom panels represent
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frequency f. In each group the contrast decreases from
left to right. The main conclusions to be drawn from these
combined Fresnel zones are (i) reducing the frequency
generally reduces slightly the size of the white hole,
and (ii) the lowest contrast anomaly contains a white
hole when its size is small [right panels of Fig. 2(b)]
and is free of a white hole when its size is large [right
panels of Fig. 2(a)]. The first arrival time map needed
for these Fresnel zones was computed by a new numerical
implementation of Huygens' construction [5] which will

be reported elsewhere.
We have demonstrated that certain realistic and

simple velocity distributions of varying contrast and size
cannot be uniquely reconstructed from complete and
precise first arrival time tomography data in the short
wavelength limit. These velocity distributions share
identical first arrival time tomography data, and therefore
the associated nonlinear optimization problem has distinct
global minima. Each such minima corresponds to a
different velocity distribution, and, consequently, it is
impossible to reconstruct the true velocity distribution
from these data. This is a major deficiency of the first
arrival time tomography data in the special cases that we
have dealt with in this Letter, as well as in other cases
where the velocity distribution allows for the existence
of a white hole. We suspect that such white holes exist
unnoticed in various published and unpublished results
and even in recent lecture notes, an example of which is
discussed next.

In an innovative application of Fermat's principle,
Berryman [6] adjusts the step size of the nonlinear
damped least squares, at each iteration, so as to essentially
minimize the number of reconstructed rays that arrive
earlier than the corresponding measured first arrival
time. He shows reconstruction obtained by the algorithm
in three different synthetic examples corresponding
to 20%, 50%, and 100% contrast in slowness (each
containing a low and high slowness anomaly rela-
tive to a uniform background), and based on these,
he claims that the algorithm "produces very good
reconstruction even for high contrast material where
standard methods tend to diverge. " We demonstrate,
however, that the velocity distributions corresponding
to 50% and 100% contrast cannot be uniquely recon-
structed by any inversion algorithm, because they contain
a white hole larger than the cell size used in the model
parametrization. We computed the first arrival time map
and the Fresnel zone for Berryman's examples by dis-
carding the high velocity anomaly and focusing only on
the low velocity anomaly and its vicinity in order to tem-
porarily eliminate any interference from the high velocity
anomaly. The geometrical wave fronts for a single source
position and for the three different contrasts are shown
in Fig. 3. The resulting Fresnel zone for 50 source/
receiver combinations are shown in Fig. 4 for the three
contrasts and for two different frequencies, f (bottom

FIG. 3. Geometrical wave fronts for a fixed source position
and decreasing contrast from top to bottom, i.e., c,/c; = 2.0
(top), c,/c; = 1.5 (middle), and c, /c; = 1.2 (bottom).

panels) and 4f (top panels). These combined Fresnel
zones show a large white hole in the 100% and 50% con-
trast for both frequencies, small white holes for the 20%
contrast and frequency 4f and no white holes for the cor-
responding frequency f (small and large are relative to the

phd f I'

FIG. 4. Combined Fresnel zones for contrast in slowness of
100% (left), 50% (middle), 20% (right), and frequency 4f (top)
and f (bottom) for Berryman's low velocity anomaly using
50 source/receiver combinations.
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FIG. 5. White holes in Berryman's 50% contrast model for
frequency 4f (top) and f (bottom) for all the 320 source/receiver
combinations.

mined by Berryman's algorithm or any other inversion
algorithm. It is interesting to note that Berryman uses
a fast ray tracer that allows for Fermat's principle to
be violated, the same principle that his inversion algo-
rithm is based upon. There is, however, a double vio-
lation of this principle in the generation of the synthetic
data and in the iterative solution of the nonlinear inverse
problem.

The major conclusion of this Letter is that complete and
precise first arrival time tomography data cannot uniquely
reconstruct the velocity distribution in the presence of
white holes. Lowering the velocity in these white holes
does not alter the first arrival time tomography data and
this leads to erroneous velocity interpretation.

It is a pleasure to acknowledge useful discussions with
Keith Miller.

cell size used in the model parametrization). Therefore,
the low velocity anomaly in Berryman's 50% and 100%
contrast models cannot be uniquely reconstructed by an
inversion algorithm. These results also demonstrate why
the inversion results for the 50% and 100% contrasts were
not as good as the inversion results for the 20% contrast.
We also computed the Fresnel zone for the 320 source/
receiver combinations used by Berryman in his 50% con-
trast model, the results of which are shown in Fig. 5 for
frequency f (bottom panel) and frequency 4f (top panel).
Both panels show a large white hole at the low velocity
anomaly. Therefore, this example (and the 100% contrast
not shown) possess distinct global minima, corresponding
to different velocity distributions (lowering the velocity
in the white hole) that cannot be unambiguously deter-
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