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Steady-State Spatial Screening Solitons in Photorefractive Materials
with External Applied Field
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Steady-state dark (bright) planar spatial solitons are predicted for photorefractive materials when the
diffraction of an optical beam is exactly compensated by nonlinear self-defocusing (focusing), due to
the screening field set up around a dark notch (or a bright beam) in a photorefractive material to which
an external field is applied. These screening solitons appear in steady state and differ from previously
observed spatial solitons in their properties and physical origin.

PACS numbers: 42.50.Rh

(s IAI' + p) (Nd —Nd) —ynNd = 0,

V . J = V . (qpnE + kaTIt, V, n) = 0,

V . E + (q/ )(en + N~ —N„') = 0,

(2)

Bright and dark solitons in Kerr media have been studied
for three decades [1—6]. Recent work on spatial solitons
in photorefractive media have shown theoretically and
demonstrated experimentally that the application of an
external field to these materials enables long-lived, but
transient, solitons [7—11]. A related study has shown
theoretically that photovoltaic materials (such as lithium
niobate) may support bright and dark steady-state planar
solitons [12].

We show theoretically that the application of an
external field enables steady-state planar solitons in
photorefractive materials, which result from nonuniform
screening of the external field. The intensity of the
light excites charges, which migrate in the presence of
the external field and are captured (recombine) by deep
(ionized donors or acceptors) traps. The shape of the
light beam gives rise to nonuniform trapping, which
results in nonuniform screening of the external field.
Thus, the magnitude of the electric field is lowered in
regions of higher optical intensity, and this field modifies
the refractive index via the linear electro-optic (Pockel's)
effect and traps the beam (or the dark notch in the beam,
depending on the sign of the index perturbation). These
steady-state "screening" solitons differ from those ob-
served or studied previously in their physical origin, their
properties, and their dependence on the light intensity.

We start with the standard set of rate, continuity, and
Poisson's equations that describe the photorefractive effect
in a medium in which electrons are the sole charge carriers,
plus the wave equation for the slowly varying amplitude of
the optical field. In the steady state and two dimensions
these equations are [12,13]
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where An(E) = znbr, ffE is the perturbation in the re-
fractive index, and the independent variables are z the
propagation axis and x the transverse coordinate; the five
dependent variables are n the electron number density,
Nd the number density of ionized donors, J the cur-
rent density, E the space-charge field inside the crys-
tal, and A the slowly varying amplitude of the optical
field defined by E,v, (x, z, t) = A(x, z)exp(ikz —itot) +
c.c. (k = 2nnb/It, where .A is the wavelength in vacuo and
co is the frequency). Relevant parameters of the crystal are
Nd the total donor number density, N& the number density
of negatively charged acceptors that compensate for the
ionized donors, s the photoionization cross section, p the
dark generation rate, y the recombination rate coefficient,
p, the electron mobility, e, the low frequency dielectric
constant, nb the background refractive index, r,tt the effec-
tive electro-optic coefficient, and 8 the width of the crystal
between the electrodes; q is the charge on the electron, k&

is Boltzman's constant, and T is the absolute temperature.
Finally, V is the external voltage applied to the crystal.

We look for solutions of the form

A (x, z) = u (x) exp (i I'z) Id„k,
l/2

(6)

where I is the propagation constant and Id„k = p/s
is the equivalent dark irradiance. We limit our analy-
sis to real u(x). Since IAI depends on x alone, we
look for solutions in which the dependent variables
n, Nd, J, and E depend solely on x, and the only com-
ponent of E and J is in the x direction. We transform
the equations to dimensionless form by the substitu-
tions n = n/Nq, E = IEIqLo/ksT, N = Nd/Nq, r =
Nd/NA, I = IJILo/IJN~kaT, and g = x/Ls, where
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Lp = (kgTa, /q N~)'t is the Debye length, Lq is the
soliton length scale defined by Lz = I/(~2kb)'t2, where

1 3b = (k/ng) 2 nbr, ffk+T/qL~ is the parameter that charac-
terizes the strength and the sign of the optical nonlinearity.
However, only the relative sign between the space
charge field E and the crystalline axes is meaningful.
In strontium barium niobate (SBN) [7—11], the largest
electro-optic coefficient is r33, and x is, therefore, parallel
to the crystalline c axis. The sign of r,ff, with respect
to the polarity of the externally applied field which is
used in a given observation, determines the sign (positive
or negative) of the perturbation in the refractive index
An. Since b now can be either positive or negative
(corresponding to An ) 0 or bn ( 0), we introduce the
dual-sign (~) notation in the definition of Lq, where the

upper and the lower signs apply to positive and negative
values, respectively, of b (and, consequently, of b n). The
dimensionless equations are

[I /b + E] (7)

n —a(1 + (u( ) (r —N)/N = 0,

J = nE + an' = const,

N —1 —n —aE'=0,
e/2Ls
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The prime stands for the derivative with respect to the vari-

able g, C = qVLD/kgTLs, and a and e are small parame-

ters defined by a = nd«k/(Nd —Nz), and nd«k is the dark

electron density and a = Lo/Ls, the ratio of the Debye
length to the soliton length. For typical photorefractive
materials, nd k is 4—10 orders of magnitude smaller than

Nd —Ng, while the Debye length L& is about 1 p, m and

the soliton length Ls is about 20 p, m.
Next, eliminate J by solving Eq. (9) for E and substitut-

ing into Eq. (11)

J = —C
t/2Ls dg

/21 s
(12)
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where g = e/ f tt2'L, dg/(1 + uo), and the upper (lower)

sign in Eq. (14) corresponds to positive (negative) values

of An.
The resulting expression for the refractive index change

is of the form b, n —1/(1 + u2), fundamentally different
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where we use the boundary condition that the electron
number densities at each electrode or crystal face are equal.
Next we expand the dependent variables u, n, N, and E is

series in a, for example,

u=uo+Ru(+ 8u2+0(8). (13)

In the limit a && a, we may omit n compared to l in

Eq. (10) and obtain, to the lowest order in a,

than the conventional Kerr-type [1—3] media (b n —«-'),

or from the saturated Kerr-nonlinearity hn —u'-/(1 + u2)

characterizing the photovoltaic solitons [12].
A first integral of Eq. (14) is obtained by quadrature

and reads

I
po = 8 + —uo

—Cil 1n(1 + uo) = 0,0

where po = duo/dg, and 8 is a constant.
Dark solitons. —The boundary conditions for the dark

soliton are uo(0) = O, uo(+tx') = u = —uo( —~) (u fi-

nite) while, at the same positions, all the derivatives van-

ish. Since 2uo = dpo/duo (analogous identities holding
for all-order derivatives), it can be shown from Eq. (15)
that the vanishing of po and uo at any given point implies
that all-order derivatives vanish at that point. This behav-

ior assures the existence of dark solitons. By substituting

po( ) = 0, uo ( ) = 0, and uo(~) = u into Eq. (15) we

obtain
2

2 1 + llo
p = + —(u —u„) —C71 lno —

b o ce 1+ u2
(16)
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FIG. l. Amplitude of the dark soliton u& divided by the

amplitude at infinity u, as a function of dimensionless length

for u = 0.5, l, 2, 5, 50, and 500. Note that the profiles are
odd and that, for large u, they converge to a single curve that

closely resembles the conventional hyperbolic tangent soliton.

with I'/b = Cil/[I + u2] & 0. The term in braces in

Eq. (16) is always positive, so that one has to choose the

positive (upper) sign to obtain a real value for po. The
consequence is rather dramatic: the dark screening soliton

may be observed onIy for a positive perturbation in the re-
fractive index, that is, if An (g) ) 0 for all g. Intuitively,

this means that the magnitude of the (positive) index per-
turbation decreases with the distance from g = 0, and the

index perturbation generated by the dark screening soli-
ton is capable of guiding a separate "probe" beam (say,
at a different wavelength that cannot activate photorefrac-
tive nonlinearity on its own), in a manner similar to the

guidance properties of Kerr-like dark solitons [14] (with

a major difference in the sign of the index perturbation).
To illustrate this important point we sketch, in the inset

in Fig. 1, the characteristic index profile responsible for a
dark screening soliton.
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Equation (16) can be integrated numerically to obtain

the profiles for the dark soliton shown in Fig. 1, as a
function of xknb(r, ttV/8)' . The propagation constant
I can be evaluated once the solution uo is found. We
follow this procedure in the Appendix by substituting
the solution of Eq. (16) into I /b and performing the

integral numerically in terms of the function f[u ], which
is shown in Fig. 2 (dashed curve), thus obtaining

(I /b)' = [CL /8 + (fL /8) ]' 2 —fL /Z. (17)

Note that unless u2 is large compared to 1, the first

term on the right-hand side of Eq. (17) dominates, I /b =
Ls/8, independent of u2, and the relation between soliton
width and u„ is obtained directly from Fig. 1. In the

regime where u„&& 1, the relation between soliton width

and u2 is obtained from Eq. (17), since the solutions
shown in Fig. 1 converge to a single curve.

Bright solitons O.n—e requires up(+~) = up( ~) = 0
while, at the same positions, all the derivatives vanish.
Furthermore, we require pp (0) = 0 and [up'(0) /up (0)] & 0
to assure a local maximum at g = 0. Accordingly, we get

pp = ~ —
up

—Cg ln(1 + up)
b

(18)

+I(I &' CLs in[1 + up(0) ] &gLs&

Ebj 8 up(0)2 E 8 )
gLs

where the function

with I /b = C g in[1 + up (0)]/ up (0). The term inside the

square brackets in Eq. (18) is always negative, so the nega-
tive (lower) sign yields a real value for pp. This corre-
sponds to a negative perturbation in the refractive index
b, n (g) for all g. Intuitively, this means that the magni-

tude of the index perturbation increases with distance from

g = 0, but, since the perturbation is negative, the material
behaves overall like a self-focusing medium, as sketched
in the inset in Fig. 3. Equation (18) can be integrated nu-

merically thus getting the soliton profiles shown in Fig. 3.
Note again that for large up (0), the solutions in units of
(I'/b)'i2 tend towards a universal profile. We can solve
as before for the propagation constant

u0(0) (1—8) de@
g[up(0)] = lim I

&-p 3 s {—u2 + up (0) ln ((1 + u2)/[1 + up(0)]))'i2(1 + u2)

is plotted as a function of up (0) in Fig. 2 (solid curve).
Both bright and dark screening solitons can be observed

at modest external fields with the commonly used photore-
fractive crystals. For example, for SBN:75 r33 1340 &

10 '2 m/V, nb = 2.3 and at A = 0.457 p,m, and maxi-
mum intensity at least 100 times larger than the dark irra-
diance (which is less than 1 mW/cm2), bright and dark
solitons of 10 p, m diameter require V/Z —670 V/cm.
We note also recent observations of self-focusing effects
that may lead to soliton formation under steady-state con-
ditions in bismuth titanate with an applied field [15].

To examine convergence of the soliton expansion, we
solved for the first order correction to the soliton ampli-
tude ut and found that this term is small. The correction

ut is proportional to the first derivative of the irradiance
and hence tends to break up the soliton, because it repre-
sents an asymmetrical tilt, i.e., hn (f) = hn (——$). The
requirements that these first derivative terms be small can
be physically expressed in terms of the diffusion field at
the soliton length scale, ED = k&T/qLs, the limiting space
charge field at the soliton scale Eq = qN, Lz/e, and the
field across the soliton E. Basically, one requires Ez « E
and E « E~. If the applied field V/4' is taken as (EoE~)'i2
and the effective trap density is about 10'7 cm s, then for
solitons larger than10 p, m the small parameters of the con-

1
vergence scheme are less than, ~.
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FIG. 2. Dimensionless function f[u ]/u as a function of
u (dashed curve) and dimensionless function g[uo(0)] as a
function of uo (0) (solid curve).
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FIG. 3. Amplitude of the bright soliton uo divided by the
amplitude at 0, uo (0) as a function of dimensionless length for
uo (0) = 0.5, 1, 2, 5, 10, and 100. Note that the profiles are
even and that, for large uo (0), they converge to a single curve
that resembles the conventional hyperbolic secant soliton.
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ferent sizes, depending on the light intensity distribution
at the crystal input face [11]. Control over the width of
the steady-state solitons Inay be provided by artificially
produced dark irradiance obtained through additional in-
coherent uniform illumination.

In conclusion, we have found a new type of spatial
solitons which rely on the nonuniform screening of
externally applied voltages in photorefractive media.

Appendix. —We need to evaluate the integral

We point out that the quasisteady photorefractive soli-
tons [7—11] result from the terms of the order ez, since
during the time window of their existence, the zero or-
der terms do not depend on x (the external field is not
screened yet) and the terms of order a are very sinall for
sufficiently large V/Z.

Finally, we discuss the distinct properties of these
steady-state screening solitons. Although the photorefrac-
tive effect is nonlocal, the nonuniform screening effect
that drives these solitons is a local effect, as manifested
by the dependence of the nonlinear term in Eq. (14) on
the local irradiance [uo (g) ~

. While the photovoltaic soli-
ton [12] is local as well (although it stems from a different
physical origin), the quasisteady photorefractive soliton is
nonlocal [7—11],and the space-charge field in that case is
dependent on the derivatives of the optical intensity dis-
tribution. A second major difference between the screen-
ing solitons and the quasisteady photorefractive solitons
is the absolute sign of the nonlinearity: In the former case
bright solitons are generated by negative perturbations in
the index, and dark solitons are driven by positive index
perturbations, while the quasisteady photorefractive bright
solitons are driven by positive index perturbations. This
leads to the third difference that appears within the time
window of observation: The screening solitons appear in
steady state only, while the quasisteady solitons are tran-
sient by nature and are observed after the gratings have
formed but before the field is screened [9—11], that is,
prior to all the effects that are responsible for the screen-
ing solitons. Another property of the screening solitons
is the existence of a unique solution; that is, in a given
material at a specific applied voltage and a given maxi-
mal irradiance, the solitons possess a unique shape. On
the other hand, the quasisteady solitons are independent

!

of the light intensity [7—11], and they may possess dif- where

t/2Lp

1 + Qp
2

t /2Lg

2
=2

/2Ls 1 + Llp

QQp

(duo/d6) (I + uo)

We separate this integral into two parts

u (1 —6)
A = A] + A2 = 2

0

dip

(duo/dg) (1 + uo')

+ 2
OQp

2
u.„(l—s) (duo/dg) (1 + uo)

where u = u(C/2Ls), and 6 is taken to be sufficiently
small so that we can approximate

t/ L)

dg+ &o gIu (]—6)j

8/Ls 2 fo "duo/(duo/dg)

1 + Q~

A2 =

We now add A~ and A2 back together and substitute for
duo/dg to obtain

A = (2(b/I )'/ f[u ] + 8/Ls j/(I + u„),

tt ~(I duo(u2 —uo)
f(u ) = lims-o o ((I + u ) In[(1 + u )/(I + uo)] —(u~~ —uo))'/z(1 + uo)
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