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Ground State Electron Configuration of Element 111
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The low-lying electronic states of element 111 are investigated by the relativistic coupled-cluster

method based on the Dirac-Coulomb-Breit Hamiltonian.
In contrast to the lighter group 11 elements, the ground state of the

Gaussian-type orbitals is used.

A large basis set (26s21p16d9f7gSh) of

atom is 6d° 7s22Ds)y; the 2Dy, state is higher by 2.69 eV, and the 6d4'°7s2S lies 2.95 eV above the
2D5/2. The reversal is ascribed to relativistic effects; without them, the S energy is 5.43 eV below
the 2D. The calculated electron affinity of the atom is 1.56 €V, and its ionization potential is 10.6 eV.

PACS numbers: 31.20.Tz, 31.30.Jv, 31.50.+w

The gold atom represents a local maximum in the
size of relativistic effects [1]. One manifestation of
these effects involves the energy separation between the
5d'"% 6525 ground state and the 5d° 6s22D excited state.
Looking at the group 11 (or coinage metal) atoms, the 2D
excitation energies of Cu are 1.389 (J = 5/2) and 1.642
(J = 3/2) eV, increasing to 3.749 and 4.304 eV for Ag
[2]. Were it not for relativity, one would expect even
higher energies for Au. Indeed, recent high-precision
calculations using the coupled-cluster method with single
and double excitations (CCSD) [3] put the nonrelativistic
2D energy at 5.301 eV above the 2§ ground state, in
line with expectations. Relativistic effects change this
value radically, giving 1.150 and 2.658 eV for the excited
2D sublevels [3]. These energies are within 0.015 eV
of experiment [2]. Qualitatively, the stabilization of
s relative to d orbitals in the 54 elements has been
predicted before, e.g., by quasirelativistic Hartree-Fock
calculations [4].

The dramatic reduction of the 2D excitation energies
in Au suggests an even larger effect for the next group
11 element, with atomic number 111. A large enough
reduction would bring the 2D state below the %S, leading
to a d’s? ground state configuration of the atom, rather
than the d'%s of the other coinage metals. This reduction
has, in fact, been predicted by means of Hartree-Fock-
Slater (HFS) calculations [5], and ionization potential and
electron affinity have been obtained using Koopmans’
theorem as well as by the difference of HFS energies
in order to derive the stabilities of the various oxidation
states, and thus information about the expected chemistry
of element 111. It should be noted that the reported
HFS ionization potentials of Au are 0.5-1 eV in error.
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The early HFS studies on superheavy elements have been
reviewed by Fricke [6].

The relativistic Fock-space CCSD method is, of course,
much more accurate, taking into account simultaneously
relativistic and correlation effects to high orders. It has
recently proved highly successful for transition energies
in Au [3]. It is therefore eminently suitable for accurate
calculation of the 6d°7s22D-6d'° 75 %S energy difference
in element 111, and hence its ground state electron
configuration.

The relativistic coupled-cluster method has been ap-
plied to the Au atom [3], to highly ionized atoms with
2-5 electrons [7], to the alkali metal atoms up to Fr [8],
and to f? excitations in Pr™3 and U** [9]. A detailed de-
scription of the method may be found in these papers. We
start from the projected Dirac-Coulomb (DC) or Dirac-
Coulomb-Breit (DCB) Hamiltonian [10,11]

H, = A+[Z[cai * Pi + CZ(B[ - ]) + Vnuc(i)]

+ Z(Veff)ij:|A+ . (D

i<j

The nuclear potential V,,. includes the effect of finite
nuclear size. A" is a product of projection operators onto
the positive energy states of the Dirac Hamiltonian. The
Hamiltonian H, has normalizable, bound-state solutions.
Equation (1) is the no-virtual-pair approximation, with
virtual electron-positron pairs not allowed in intermediate
states. The effective potential in Coulomb gauge, correct
to second order in the fine-structure constant «, is the
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Coulomb-Breit potential [12]

1 1
Verr = T 5
2 <F2

[a, s tla) crp)as - l']g)/l‘llz].
(2)
where the second term is the frequency-independent Breit
interaction.
In g-number theory the DCB Hamiltonian H. is
rewritten in terms of normal-ordered products of the

spinor operators, {r*s} and {r* s ut} [10,13],
H= H. - (0|H+]|0)

Zfr.\{ers} + % Z(rs”lu) {r* s ur}. 3)

rstu

where f,, and (rs||tu) are, respectively, elements of one-
electron Dirac-Fock and antisymmetrized two-electron
Coulomb-Breit interaction matrices over Dirac four-
component spinors. The effect of the projection operator
A" is now taken over by normal ordering, denoted by
the curly braces in the equation above, which requires
annihilation operators to be moved to the right of creation
operators as if all anticommutation relations vanish. The
Fermi level is set at the top of the highest occupied
positive energy state, and the negative energy states are
ignored.

The no-pair approximation leads to a natural and
straightforward extension of the nonrelativistic open shell
CC theory. The multireference valence-universal Fock
space coupled-cluster approach is employed here, which
defines and calculates an effective Hamiltonian in a
low-dimensional model (or P) space, with eigenvalues
approximating some desirable eigenvalues of the physical
Hamiltonian. According to Lindgren’s formulation of the
open-shell CC method [14], the effective Hamiltonian has
the form

Hep = PHQP, Q = {exp(S)}. 4

where ) is the normal-ordered wave operator, and the
excitation operator S is defined with respect to a closed-
shell reference determinant. In addition to the traditional
decomposition into terms with different total (/) number

TABLE L

of excited electrons, S is partitioned according to the
number of valence holes (m) and valence particles (1) to
be excited with respect to the reference determinant.

- BRI
-y s(s )
m=0n=0 \Il=n+n

In the present application we use the (m.n) = (0,0),
(1,0), and (2,0) sectors. The lower index / is truncated
at [ = 2. The resulting CCSD scheme involves the tully
self-consistent, iterative calculation of all one- and two-
body virtual excitation amplitudes, and sums all diagrams
with these excitations to infinite order. Here we start by
solving the Dirac-Fock-Coulomb (DFC) or Dirac-Fock-
Breit (DFB) equations for the closed-shell system 111
in the 64'°7s> configuration, which defines the (0.0)
sector. The anion is then correlated by CCSD. and up
to two electrons are removed from the 64 and 7s shells.
recorrelating the system at each stage. Removing one
electron gives the>D and S states of the neutral 111, and
ionization of the second electron leads to the «'". «"s.
and d%s? states of the positive ion. To avoid “variational
collapse™ [15,16], the Gaussian spinors in the basis are
made to satisfy kinetic balance [17]. They also satisty
relativistic boundary conditions associated with a finite
nucleus, described here as a sphere of uniform proton
charge [13]. We used an atomic mass of 269. and the
speed of light ¢ was set at 137.03599 atomic units.
Nonrelativistic results were obtained with ¢ = 10 a.u.

The basis set used was optimized using the procedure
described in [18] and is given in Table I. It consists
of (26s521p16d9f7¢5h) Gaussian-type orbitals, without
contraction. Atomic orbitals with the same / but different
k number (e.g.. pi,> and p3,) are expanded in the same
basis functions. The quality of the basis may be judged
by comparing numerical DFC orbital energies [19] with
those obtained using the basis. Such a comparison is
provided in Table II for the uniformly charged finite
nucleus, showing good agreement between numerical and
basis-set energies. Replacing the finite nucleus by a point
nucleus has a much larger effect on orbital energies.

Basis set.

{ Exponents of Gaussian-type orbitals

B 62403300, 11747900, 2975270, 876539, 272668, 90 117.7, 33080.1, 13 358.9,
5715.77, 2535.25, 1150.6. 439.73, 207.222, 79.6407, 44.6981, 15.8297,
8.35588, 3.63478, 1.58, 0.687, 0.298. 0.130. 0.056, 0.0243, 0.0105, 0.004 58

p 757984, 250978, 79 190.9, 23 508.5, 8302.39, 3336.07, 1448.41, 658.028,
308.248, 143.799, 70.8851, 33.7763, 16.9894, 7.39931. 3.655 11, 1.83.

0.914, 0.457, 0.228, 0.11375, 0.056 75

d 4489.33, 1301.84, 495.293, 215.213, 100.527, 48.2317, 23.488, 11.4891,
5.420 16, 2.56, 1.21, 0.569, 0.268, 0.127, 0.060 183, 0.028 552

f 679.352, 229.026, 95.415, 43.2829, 20.2221, 9.14651, 4.14, 1.87, 0.847
2.56, 1.21, 0.569, 0.268, 0.127, 0.060 183, 0.028 552

h 1.21, 0.569, 0.268, 0.127, 0.060 183
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TABLE II. Orbital energies of the 111 anion. Numerical
DFC with point and uniformly charged nucleus compared with
basis-set uniformly charged nucleus in the DFC, DFB, and
nonrelativistic HF approximations (a.u., signs reversed).

Numerical DFC

Basis set, uniform nucleus

Orbital Point Uniform DFC DFB HF

6s 5.0668 5.0102 5.0071 4.9933 3.0831
7s 0.1439 0.1372 0.1367 0.1356  0.0181
6p1)2 3.5158 3.5091 3.4887 3.4674  2.0249
6p3)2 1.9338 1.9390 1.9396 1.9346  2.0249
6d-, 0.1830 0.1863 0.1863 0.1860  0.3550
6ds/ 0.0761 0.0790 0.0789  0.0800  0.3550
5fsp 2.6698 2.6769 2.6778 2.6842  3.4884
5f1 2.4451 2.4519 24530 2.4644  3.4884

The DFC, DFB, and nonrelativistic Hartree-Fock (HF)
energies of the high occupied orbitals of 1117 are given
in Table II. Relativity has a very large effect on orbital
energies. Of particular interest to us is the considerable
lowering of the 7s orbital, accompanied by raising the 64,
particularly the 6ds/,,. While the nonrelativistic 7s lies
0.34 hartree above the 6d, the order is reversed in the rel-
ativistic approach, with the 64 0.055 hartree above the 7s,
pointing to the likelihood of a 64° 7s% ground state con-
figuration for the neutral atom. Other orbitals are also
affected. The large spin-orbit splitting of the 6p and 64
orbitals should be noted. Another noteworthy effect is the
very large relativistic contraction of the 7s orbital. The
relativistic and nonrelativistic 7s electron densities calcu-
lated for the 6d°7s? configuration are shown in Fig. 1.

0.49
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0.28 0.35 0.42
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0.4
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FIG. 1. Electron density of the relativistic (solid line) and
nonrelativistic (dashed) 7s orbital, calculated in the 64°7s?
configuration.

Inclusion of the Breit interaction has small effect on the
orbitals or their energies.

Next, correlation is included by the CCSD method
described above. The 5f6spd7s shells are correlated.
Virtual orbitals with high orbital energies have been
found to contribute very little to correlation effects
on transition energies; orbitals higher than 40 a.u. are
therefore eliminated from the coupled-cluster calculation,
effecting considerable savings in computational effort.
The resulting excitation energies (EE), electron affinity
(EA), and a few of the ionization potentials (IP) are
shown in Table III. The 64d° 7s%2Ds,, state is about 3 eV
below the 64'°7s2S. The accuracy of the results may be
estimated by comparison with our previous calculations
for Au [3]. Errors in the corresponding Au EEs were
0.015 eV or less; the EA was correct to 0.04 eV, while
somewhat larger errors (0.1-0.2 eV) were found for
the IPs. The present calculation should have roughly
the same accuracy. We therefore conclude that the
ground state of element 111 is definitely 6d4°7s22Ds),.
The IPs collected in Table III are those leading to
the lowest state of each of the 64%7s%, 6d°7s, and
6d'° configurations. Obviously, the order of the three
configurations is reversed relative to Au™, and the ground
state of the 111 cation is 64® 7s. It is interesting to note
that the HFS results [5] were not very far from ours.
Thus, they predicted a 2S-2Ds/, separation of 2.9 eV (we
get 3.0 eV), an EA of 1-1.3 eV (vs 1.55 eV), and their IP
was 10.14 eV (vs our 10.60 eV).

In summary, very large relativistic effects on orbital
energies and level order of element 111 are observed.
In particular, the 6d orbital goes well above the 7s.
Contrary to the lighter coinage metals, with d'°s ground
configurations, the lowest state of 111 is 64°7s%. The
ground state of the cation is 64®7s2. The excitation
energies and electron affinity are expected to be accurate
to a few hundredths of an eV, and the ionization potentials
t0 0.1-0.2 eV.

The computations reported above were carried out on
the IBM RS/6000-360 workstation at TAU. Research at
TAU was supported by the US-Israel Binational Sci-
ence Foundation and by the Israel Science Foundation.
P.S. is grateful for financial support from AURC (Auck-
land) and NZ/FRG (Wellington). Y.I. was supported

TABLE III. CCSD excitation energies (EE), electron affinity
(EA), and ionization potentials (IP) of element 111 (eV).
Transition DC DCB NR
EE 6d°7s22Ds;; — 6d° 7s22Ds), 2719 2687 O
6d°7s22Ds;; — 6d'°7s%S) ) 3.006 2953 —-5430
EA  6d°7s22Ds;, — 6d'° 7525, 1.542  1.565 6.484
IP  6d°7s?2Ds;; — 6d®7s23D, 10.57 10.60 2298
6d° 715s*2Ds;, — 6d° 7s3Ds 1236 12.33 0.92
6d° 7s22Ds;; — 6d'°'S, 1530 1523 -0.44
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