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Ground State Electron Configuration of Element 111
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The low-lying electronic states of element 111 are investigated by the relativistic coupled-cluster
method based on the Dirac-Coulomb-Breit Hamiltonian. A large basis set (26s21p16d9f7g5h) of
Gaussian-type orbitals is used. In contrast to the lighter group 11 elements, the ground state of the
atom is 6d 7s' D5/2, the D3/2 state is higher by 2.69 eV, and the 6d' 7s S lies 2.95 eV above the

D5/2. The reversal is ascribed to relativistic effects; without them, the S energy is 5.43 eV below
the D. The calculated electron affinity of the atom is 1.56 eV, and its ionization potential is 10.6 eV.

PACS numbers: 31.20.Tz, 31.30.Jv, 31.50.+w

The gold atom represents a local maximum in the
size of relativistic effects [1]. One manifestation of
these effects involves the energy separation between the
5d' 6s S ground state and the Sd 6s D excited state.
Looking at the group 11 (or coinage metal) atoms, the 2D

excitation energies of Cu are 1.389 (J = 5/2) and 1.642
(J = 3/2) eV, increasing to 3.749 and 4.304 eV for Ag
[2]. Were it not for relativity, one would expect even
higher energies for Au. Indeed, recent high-precision
calculations using the coupled-cluster method with single
and double excitations (CCSD) [3] put the nonrelativistic
D energy at 5.301 eV above the S ground state, in

line with expectations. Relativistic effects change this
value radically, giving 1.150 and 2.658 eV for the excited
2D sublevels [3]. These energies are within 0.015 eV
of experiment [2]. Qualitatively, the stabilization of
s relative to d orbitals in the 5d elements has been
predicted before, e.g., by quasirelativistic Hartree-Fock
calculations [4].

The dramatic reduction of the D excitation energies
in Au suggests an even larger effect for the next group
11 element, with atomic number 111. A large enough
reduction would bring the D state below the S, leading
to a d s ground state configuration of the atom, rather
than the d' s of the other coinage metals. This reduction
has, in fact, been predicted by means of Hartree-Fock-
Slater (HFS) calculations [5], and ionization potential and
electron affinity have been obtained using Koopmans'
theorem as well as by the difference of HFS energies
in order to derive the stabilities of the various oxidation
states, and thus information about the expected chemistry
of element 111. It should be noted that the reported
HFS ionization potentials of Au are 0.5 —1 eV in error.

The early HFS studies on superheavy elements have been
reviewed by Fricke [6].

The relativistic Fock-space CCSD method is, of course,
much more accurate, taking into account simultaneously
relativistic and correlation effects to high orders. It has
recently proved highly successful for transition energies
in Au [3]. It is therefore eminently suitable for accurate
calculation of the 6d 7s D-6d' 7s S energy difference
in element 111, and hence its ground state electron
configuration.

The relativistic coupled-cluster method has been ap-
plied to the Au atom [3], to highly ionized atoms with
2—5 electrons [7], to the alkali metal atoms up to Fr [8],
and to f2 excitations in Pr+' and U+4 [9]. A detailed de-
scription of the method may be found in these papers. We
start from the projected Dirac-Coulomb (DC) or Dirac-
Coulomb-Breit (DCB) Hamiltonian [10,11]

H+ = A+ g[cu, p; + c (P; —1) + V„„,(i)]
l

+ g(V, tt);, A'.

The nuclear potential V„„, includes the effect of finite
nuclear size. A+ is a product of projection operators onto
the positive energy states of the Dirac Hamiltonian. The
Hamiltonian H+ has normalizable, bound-state solutions.
Equation (1) is the no-virtual-pair approximation, with
virtual electron-positron pairs not allowed in intermediate
states. The effective potential in Coulomb gauge, correct
to second order in the fine-structure constant n, is the
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= g f, ,(r's} + —P(rs~~tu)(r s ut},(3)
)A r.s ttt

where f , , and '(rs~~tu) are, respectively, elements of one-
electron Dirac-Fock and antisymmetrized two-electron
Coulomb-Breit interaction matrices over Dirac four-
component spinors. The effect of the projection operator
A+ is now taken over by normal ordering, denoted by
the curly braces in the equation above, which requires
annihilation operators to be moved to the right of creation
operators as if all anticommutation relations vanish. The
Fermi level is set at the top of the highest occupied
positive energy state, and the negative energy states are
ignored.

The no-pair approximation leads to a natural and
straightforward extension of the nonrelativistic open shell

CC theory. The multireference valence-universal Fock
space coupled-cluster approach is employed here, which
defines and calculates an effective Hamiltonian in a
low-dimensional model (or P) space, with eigenvalues
approximating some desirable eigenvalues of the physical
Hamiltonian. According to Lindgren's formulation of the
open-shell CC method [14], the effective Hamiltonian has

the form

H„t~ = PHQP, fl = (exp(S)}, (4)

where 0 is the normal-ordered wave operator, and the
excitation operator S is defined with respect to a closed-
shell reference determinant. In addition to the traditional
decomposition into terms with different total (i) number

Coulomb-Breit potential [12]
1

Icl) ' cl' + (A'( ' r) )(A' ' r) )/t j I,
7]

(2~
where the second term is the frequency-independent Breit
interaction.

In q-number theory the DCB Hamiltonian H i»

rewritten in terms of normal-ordered products of the
spinor operators, (r+s} and (r+s+ut} [10,13],

H = H- —(0 iH+ i 0)

of excited electrons, S i» partitioned according to the
number of valence holes (m) and valence particles (n) to
be excited with respect to the reference determinant.

~= XX
In the present application we use the I, ~~I, I~) =—I(), ()I,

(1,0), and (2,0) sectors. The lov'er index i is truncated
at l = 2. The resulting CCSD scheme involves the t'ully

self-consistent, iterative calculation of all one- and two-

body virtual excitation amplitudes, and sums all diagrams
with these excitations to infinite order. Here we start hv

solving the Dirac-Fock-Coulomb (DFC) or Dirac-Fock-
Breit (DFB) equations for the closed-shell system 111
in the 6d'"7s-' configuration, which defines the (0,0)
sector. The anion is then correlated by CCSD, and up
to two electrons are removed from the 6d and 7.» shells.
recorrelating the system at each stage. Removi»g one
electron gives the'-0 and-'S states of the neutral 111, and

ionization of the second electron leads to the d, d
and d"s- states of the positive ion. To avoid "v ~riational
collapse" [15,16], the Gaussian spinors in the basis are

made to satisfy kinetic balance [17]. They also satisfy
relativistic boundary conditions associated with a finite
nucleus, described here as a sphere of uniform proton
charge [13]. We used an atomic mass of 269. and the

speed of light c was set at 137.03599 atomic units.
Nonrelativistic results were obtained with c = 10- a.u.

The basis set used was optimized using the procedure
described in [18] and is given in Table I. It consists
of (26s21p16d9f7g5h) Gaussian-type orbitals, without

contraction. Atomic orbitals with the same I but different
k number (e.g. , p~tv and p3i. ) are expanded in the same
basis functions. The quality of the basis may be judged
by comparing numerical DFC orbital energies [19] with

those obtained using the basis. Such a comparison i»

provided in Table II for the uniformly charged finite

nucleus, showing good agreement between numerical and
basis-set energies. Replacing the finite nucleus by a point
nucleus has a much larger effect on orbital energies.

TABLE I. Basis set.

h

Exponents of Gaussian-type orbitals

62403 300, 11 747900, 2975 270, 876539, 272668, 90117.7, 33080.1, 13 358.9,
5715.77, 2535.25, 1150.6, 439.73, 207.222, 79.6407, 44.6981, 15.8297,
8.355 88, 3.63478, 1.58, 0.687, 0.298, 0.130, 0.056, 0.0243, 0.0105, 0.00458
757 984, 250978, 79 190.9, 23 508.5, 8302.39, 3336.07, 1448.41, 658.028,
308.248, 143.799, 70.8851, 33.7763, 16.9894, 7.39931.3.655 11, 1.83.
0.914, 0.457, 0.228, 0.11375, 0.05675
4489.33, 1301.84, 495.293, 215.213, 100.527, 48.2317, 23.488, 11.4891,
5.420 16, 2.56, 1.21, 0.569, 0.268, 0.127, 0.060 183, 0.028 552
679.352, 229.026, 95.415, 43.2829, 20.2221, 9.14651, 4.14. 1.87, 0.847
2.56, 1.21, 0.569, 0.268, 0.127, 0.060 183, 0.028 552
1.21, 0.569, 0.268, 0.127, 0.060 183
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