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Amplification under the Standard Quantum Noise Limit
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We show that a saturable amplifier can beat the "3 dB" quantum noise figure of linear amplifiers,
approaching the ideal "0 dB" Heisenberg limit. Noise suppression is due to nonlinear saturation effects
which cut off the high-intensity tail of the photon distribution. A Monte Carlo simulation of an actual
semiconductor laser amplifier leads to a minimum noise figure of 0.51 dB, with a still sizable gain of
10.8 dB. The best performance corresponds to an output signal photon number which equals 0.7 times
the saturation number.
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O = avavata, (3)

The noise of quantum origin in optical amplifiers poses
severe limitations to the transparency of optical networks
[1], particularly at the first amplification stages of the
communication line, but also at repeaters and boosters
which split the line into several branches. The most
significant characteristics of the amplifier are the gain g
and the noise figure R. These are defined as follows:
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where 5 and 9/ denote signal and noise at the input
(in) and at the output (out) of the amplifier. For on-off
modulation one has

5 = (o&,„—(o&,«,
(2)~ = —(&~0'&..+ &~o'&.„),

where ( ) denotes ensemble average and 0 is the
detected observable. Hence, both gain and noise generally
depend on the kind of detection performed at the output
of the amplifier.

Optimal performance is achieved when the amplifier
operates at the required gain with the lowest possible
noise figure. The Heisenberg uncertainty relations limit
the minimum achievable noise figure of any device to
R ) 1 (&0 dB) (otherwise it would be possible to de-
vise a detection apparatus which is able to measure an
observable classically, upon reducing its quantum fluc-
tuations as desired [2]). The ideal Heisenberg limit can
actually be approached for homodyne detection using
parametric amplification (one quadrature of the field is
amplified, whereas the conjugated quadrature is attenu-
ated, both with ideal noise figure; see Refs. [3] and [4]).
Therefore phase sensitive parametric amplifiers are ideal
amplifiers for homodyne detection.

In the following we will focus attention only on direct
detection, as it is still an open problem to design an
optimal number amplifier working at the Heisenberg limit.
In the quasimonochromatic approximation, the detected
observable is given by

a2
+ A, P(u, u*, t),

BA'Bo.'
(4)

where n is the complex radiation field, A is the stimulated
emission coefficient, and C = B + 2k is the sum of the
absorption coefficient and the cavity loss. The gain and
the noise figure for direct detection can be easily evaluated
from normal ordered moments. They are given by

g = exp[(A —C)t],

1R = 1 + 2 (no/'(Q —1) (2D —1)
g2hno

+ 2(6' —1)D[(6 —1)D + 1]). (6)

where ai'a is the number operator of the field mode a at
the peak frequency t, and b, v is the optical bandwidth of
the amplifier. For direct detection ideal photon number
amplifiers have been suggested in Ref. [5], and ideal
Hamiltonians have been derived in Ref. [6] but with
no feasible device approaching the ideal behavior. (For
parametric conversion in some special circumstances it is
possible to attain quasi-ideal amplification but only for
very low gains [4]. Recently, a scheme for realizing
a photon number amplifier has also been suggested,
based on a high-quantum-efficiency photodetectors and a
number state semiconductor laser [7].)

In the above scenario the minimum R = 2 (=3dB)
noise figure for linear amplifiers has been consolidated
as an actual standard limit for direct detection, and it is
generally considered as the unavoidable noise which is
due to spontaneous emission (or parametric spontaneous
emission for parametric amplifiers [4]). Such a limit,
however, is just a consequence of the linearity assump-
tion. In fact, let us briefly recover the standard 3 dB limit
from the Fokker-Planck equation of a linear amplifier. In
the Glauber-Sudarshan P-function representation the field
evolution is given by

a ~ 1—P(u, u*, t) = ——(A —C)
Bt 2

a
X [uP(a, u, t)] + c.c.

8cx
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It is of great interest to establish whether the limit (7)
is effectively a lower bound for real devices or not. It has
been pointed out that saturation effects may significantly
reduce the output noise associated with spontaneous
emission [8,9], but the obvious objection is that they

In Eq. (6) D = A/(A —C), whereas no and hno represent
the average and fluctuations of the input photon number,
respectively. For high gains (A » C) and intense coher-
ent inputs, the noise figure approaches the value

also reduce the gain dramatically. A first evidence of
very low noise figures for significant gains has been
obtained in Ref. [10],where an actual semiconductor laser
amplifier has been modeled according to the Scully-Lamb
theory (see Ref. [11]). However, this result is affected by
unphysical noise figures under the Heisenberg limit (due
to insufficient consideration of the amplified spontaneous
emission), and hence the problem has still remained open.

In order to clarify the role of saturation effects in re-
ducing the output noise we adopt a very accurate Fokker-
Planck equation developed by Lugiato, Casagrande, and
Pizzuto [12]. In the Wigner function representation
W(x, x', t), the equation is given by

, BW(x, x', t) 8 20" & 0 82
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The advantage of using the Wigner-function representa-
tion (instead of the P-function) is that the diffusion matrix

always remains positive definite for any choice of param-
eters and all values of the field [thus also W(n, a*, t) re-
mains positive at all r for input coherent states at t = 0].

It is easy to check that the Fokker-Planck equation (8)
in the P-function representation correctly reduces to the
linear case (4) in the limit of weak signals and large
saturation numbers N, . In this way one also obtains the

following relations among parameters:

A = 2kO(1 + a.), 8 = 2kO(1 —o.) . (10)

In the nonlinear regime Eq. (8) can be efficiently solved

by means of Green's-function Monte Carlo techniques
[15]. Here we focus attention on the same semiconductor
amplifier considered in Ref. [10],whose characteristic pa-
rameters are reported in Table I. We consider input co-
herent states and evaluate gain and noise figure according
to Eqs. (1)—(3). The mean photon number and the num-

In Eq. (8) k is the cavity loss, N, is the saturation pro-
ton number, x is the scaled complex field (x = u/~N„
a being the eigenvalue of the annihilation operator), o.
is the atomic population inversion, 8 is the cooperation
parameter, and f = yN/2y& (y~~ and y& are the longi-
tudinal and transverse atomic decay rates, respectively).
Essentially, all approximations made in deriving Eq. (8)
from the microscopic master equation rely on the as-
sumption that N, = N » 1 [13], with N denoting the
effective number of atoms populated on the two lasing
levels. Moreover, because of adiabatic elimination of
atomic variables, the following inequality should also be
satisfied [14]:

TABLE I. Characteristic parameters of the semiconductor

(GaAs) laser amplifier analyzed in this paper (from Ref. [10]).
Parameters k, 8, and cr are obtained through Eq. (10) in the

radiative limit f = 1.

Stimulated emission coefficient
Absorption coefficien
Cavity damping constant
Speed of light
Cavity damping length
Peak frequency
Optical bandwidth
Cooperation parameter
Saturation photon number
Population inversion
Parallel/transverse decay ratio
Photons per input power

1.17 x 10' s
3.375 x 10'' s

7.5 x 10' ms '

1.2 x 103 pm
1014 &

—1

1.263 x 10' s

2.01
1.115 x 104

0.5522

6.1 x 10' %-'

ber fluctuations are related to the Wigner-function mo-

ments as follows:

2 l
(ii(tj) = f d'ii w(ii, ii', t)lii ~' ——,

(An'(t)) = jd'ii w(ii, ii', &) (lii I

—liil') —Yi(t))'

(12)

In our Monte Carlo approach the simulated points are dis-
tributed in the complex plane according to the distribution

W(u, u*, r). Input coherent states correspond to Gauss-
ian Wigner functions. After evolving points according to
Eq. (8), the mean values (11) and (12) are evaluated sim-

ply as sums over simulated data. The error bars are com-
puted, as usual, by dividing the ensemble of points into
subensembles, and then calculating the rms deviation of
the subensemble averages with respect to the global one.
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In Fig. 1 we plot the gain versus the amplifier length
for different input signals. Three qualitatively different
operating regimes are evident: (i) a linear regime for small
signals (x « 1 for all i ~ l.), (ii) a saturating regime
leading to x ( 1 at i —l., and (iii) an ultrasaturating
regime where x —1 at i —i.. Qualitatively, in the linear
regime the gain increases almost linearly with l for the
whole amplifier length; in the saturating regime the gain
starts saturating roughly at the rniddle of the amplifier
length, whereas in the ultrasaturating regime it is already
completely saturated and starts decreasing. In Fig. 2 the
noise figure is plotted for the same input signals of
Fig. 1. The effect of saturation is striking. In the linear
regime the noise figure starts linearly, then approaches an
asymptotic value as a function of the amplifier length.
In the saturating regime the noise figure is no longer
monotonically increasing and exhibits a deep minimum
before I = i.. Finally, in the ultrasaturating regime the
noise figure exhibits a plateau region at approximately
3 dB before the complete gain saturation, where it again
starts increasing as a function of l.

0.2 0.4 0.6 0.8

FIG. 2. Noise figure versus amplifier length for the same
parameters of Fig. 1.
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In Figs. 3 and 4, the gain and noise figure are plotted as
levels curves versus both the input signal and the amplifier
length. A wide region where the noise figure is well
below the standard 3 dB limit is evident, corresponding
to still sizable gains. The minimum is R = 0.51 dB,
corresponding to a gain g = 10.8 dB and an amplifier
length l = 0.6l.. It occurs for the output signal photon

~ ~~~ ~ ~

O
0 0.5

l
FIG. l. Gain versus amplifier length for the semiconductor
laser amplifier in Ref. [10] (the parameters of the amplifier
are reported in Table I). The amplifier has been modeled
according to the Fokker-Planck equation (8) using 20 Monte
Carlo experiments of 1000 events each (the fixed spontaneous
amplification emission has been more carefully studied with
200 experiments for the input vacuum). The characteristics
of the amplifier have been evaluated for input coherent states,
direct detection, and on-off modulation according to Eqs. (1),
(2), (11), and (12). The three different regimes correspond
to (i) linear for S;„=—20 dBm; (ii) saturating for S;„=
0.16 dB m; and (iii) ultrasaturating for S;„=10.72 dB m
[S(dBm) = 10 log, o(103S): the equivalent average photon
number is (n) = S/hvhv].

C)

I

C)

io 0.2 0.4 0.6 0.8

l
FIG. 3. Level curves (in dB) for the gain as a function of both
the amplifier length and input signal (the other parameters are
the same as in Fig. 1).
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rameters 0, o., and N„with the aim of achieving larger
regions of best performance in the (S;„,I) plane: this will

be the subject of a forthcoming paper.
We thank L. Lugiato for useful discussions.

gIo 0.2 0.4 0.6 0.8

FIG. 4. Level curves (in dB) for the noise figure as a function
of both the amplifier and input signal (the other parameters are
the same as in Fig. 1).

number approximately given by

S,„t = 0.7N, hvhv. (13)

An extensive numerical simulation —for varying parame-
ters N„8, and o.—shows that Eq. (8) very accurately de-

scribes saturation effects in the quantum regime: In fact,
for N, » I and parameters 0 and rr within the valid-

ity domain (9), all resulting noise figures are above the

Heisenberg limit.
In conclusion, we have shown that a saturable ampli-

fier can beat the 3 dB standard limit of linear amplifiers,

approaching the Heisenberg 0 dB limit. The origin of
noise suppression is due to saturation itself, which in an

intermediate nonlinear regime can effectively cut off the

high-intensity tail of the photon distribution, without lim-

iting the gain too much. The best performance is achieved

by properly tuning the amplifier length and the input sig-

nal, in order that saturation effects are not too strong, with

an output signal photon number approximately equal to
0.7 times the saturation photon number. We focused
attention on parameters corresponding to an actual am-

plifier, but a further optimization is possible versus pa-
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