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We have obtained a class of solitary wave solutions to novel exactly integrable nonlinear wave
equations. Conservation laws can be identified and velocities of propagation predicted. We propose to
test our predictions in the optical domain with two-color experiments.
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The propagation of shape-preserving excitations as
solutions of nonlinear wave equations is an important
subject for a variety of fields of physics, including hy-
drodynamics [1], particle physics [2], coherent atomic
transients [3], plasma physics [4], and optical commu-
nications [5]. The balance between nonlinearity and
dispersion in nonlinear wave equations is usually so crit-
ical for the shape-preserving character of their solutions
that only a limited set of discrete solution functions is
available, and these are usually restricted to combinations
of hyperbolic secants. However, we derive here a pair of
nonlinear wave equations that have the unusual property
that, as a coupled pair, the need for this critical balance is
greatly reduced. We show that they have exact solutions
that, for all practical purposes, are arbitrary functions.
We also give numerical evidence supporting our predic-
tions and identify experimental parameters that appear to
permit a two-color optical test of this theory.

Without concern for a specific physical context at
the onset, let us begin by writing generic equations for
two “fields” interacting with a “medium” in which they
propagate. The field amplitudes are denoted V, and V,,
which depend on laboratory coordinates z and ¢, and
the medium response is determined by two nonlinear
functions f(V,) and A(V,). In terms of pulse-localized
coordinates { = z and 7 =t — z/c the wave operator
d/dz + 98/dct becomes simply 4/ and we have

aVa/3¢ = igf(Va), (1a)
avb/af = igh(Vb). (lb)

Many examples of such nonlinear wave equations are
know (sine-Gordon, Korteweg—de Vries, nonlinear
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Schrodinger, etc.). In almost all if not all such cases in
physics, the nonlinear functions f and h are determined
by a deeper dynamical interaction that is truncated at the
lowest order of nonlinearity, usually cubic. However,
we have found a physical example in which this deeper
interaction is not truncated, in which exact integrability is
nevertheless achieved, and for which the prediction of an
arbitrary solution function shape appears to be testable by
optical experiments.

First, we explain what we mean by a deeper dynam-
ical interaction. A trivial example occurs when f(V,)
and h(V,) are obtained from linear equations such as
iof /ot = —gV,. The effect is purely dispersive of
course, and causes only a velocity change. However, this
example becomes nonlinear in an interesting way if the
coupling “constant” g also becomes a dynamical variable
that is itself couple to f and h and the V’s. Such a situ-
ation actually arises naturally in quantum optics where
the V’s can be interpreted as proportional to the electric
field strengths of a pair of laser beams traversing the same
medium, and g enters very symmetrically with f and A
through the equations

s [/ 0 VvV, 0 f
i—[g}=—[Va iy Vb] l:g:|- 2)
ot | p 0 V, 0 h

Here W =[f,g,h] 1is the atomic state vector
of three-level atoms comprising the medium,
and (2) is the appropriate Schrédinger equation

with y playing the role of an irreversible relax-
ation rate. We take the initial state vector to be
W({,7 = —x) =[1,0,0]. Because of this our boundary
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conditions f, h, V,, V, are all real and g is pure imaginary
throughout. Novel coupled nonlinear waves are predicted
by Egs. (1) and (2), and we have studied them in both
transient and shape-preserving domains, finding a number
of remarkable solitary wave phenomena. In this Letter
we will show that the coupled equations (1) and (2) can
be solved without dynamical truncation, i.e., without
introducing an approximate nonlinear susceptibility and
without relaxation to a steady state.

Let us quickly point out some familiar results if only
one wave is present, say V,, but the dynamical coupling
to g is retained. For example, when the single pulse under
consideration is slowly changing and weak (V, < v), the
overdamped solution for g is given by ig = —(V,/y)f.
When this is substituted into (la) we get 9V,/d{ =
—(1/y) f*V,. If the pulse is not too long, f can change
only negligibly and we get generic exponential-type
spatial decay of the pulse as it propagates: V,({,7) =
Va(0,7) exp[—{/v].

Under the opposite assumption (strong pulse: y < V,)
a soliton solution [6] appears. In this case, by neglect-
ing vy and introducing the integrated-pulse-amplitude
variable ®,(f,7) =2 [". d7'V,(,7'), we can ob-
tain the sine-Gordon equation of self-induced trans-
parency: 8°®,/0{d1 = sin®,, with its familiar 277-sech
solution. It follows from (1) and (2) that the pulse
“energy” E,(¢{) = [~ d7' V2({, ') satisfies the equation
dE,/d¢ = f?({,7 = ») — 1. The presence of the decay
parameter y in Egs. (2) mandates that f({, 7 = ») — 0 if
the pulse is strong or long enough. Then the pulse energy
decreases linearly, not exponentially, with a characteristic
decay length Z,, which can be defined in terms of the
pulse energy at { = 0, viz., Z, = E,(0). Although the
existence of Z, depends on the presence of the relaxation
rate vy, the value of Z, does not [7].

Now we turn to the dynamically coupled two-pulse
situation of central interest. Equations (1) and (2) have
to be solved consistently as a boundary and initial value
problem which, in general, requires a numerical approach.
However, we have found analytic solutions under certain
conditions. Because an adiabatic assumption is key to the
solutions, we use the term “adiabaton” to describe these
pulses.

We first present the result of a computer simulation.
In Fig. 1(a) we show the temporal profile of the two
injected pulses at the entry surface of the medium at { =
0: a Gaussian-shaped pulse V,(0,7) = A exp[—(7/7)?]
and the second pulse with a smooth turn-on and then
a constant amplitude V,(0,7) = B (for simplicity). In
Figs. 1(b)—1(d) we display temporal snapshots of both
pulses after various propagation distances {. These
solutions were obtained by integrating the five coupled
nonlinear partial differential equations (1) and (2) on a
space-time grid. We used an iterative predictor-corrector
scheme to control the convergence in each space-time
propagation step.
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FIG. 1. The evolution of a pulse pair as exact solutions
of the nonlinear wave equations (1) and (2) in a medium
of three-level atoms in A configuration. Temporal profiles
of the pulse pairs were taken after various propagation
distances ¢ (measured in units of Z,). After { = 3.5, the
pulse reshaping is completed and adiabatons have formed.
The bump of V, at 7 =0 in (b)-(d) travels with the
vacuum speed of light ¢, whereas the adiabaton pair has a
reduced speed u = ¢/260. Superimposed on each curve is
the analytical solution of Eq. (5). The parameter choice was
made with the optical two-color experiment in mind [7y = 5 X
107 au., y=10"au,A=5Xx10"7au,B=6X 107 au
and u = 6.8 X 107"3 a.u. (corresponding to an atomic density
= 1.482 X 107'% a.u. and equal oscillator strength = 0.1 a.u.
for both transitions)].

The two pulses initially undergo significant reshaping.
The field V, broadens and its amplitude decreases. At
the same time V, develops a dip and a bump [Fig. 1(b)].
When the pulses have propagated further ({ = 3.5Z,) a
stable adiabaton pair has been formed [Figs. 1(c) and
1(d)]. The adiabaton pair (consisting of the dip in V, and
the broadened pulse V,,) travels loss-free distances, which
exceed Z, by orders of magnitude without further change
of its shape at a reduced speed.

There are now two theoretical tasks—to predict the na-
ture of this nonlinear shape-preserving two-pulse excita-
tion and to describe the physics of the transients before the
fixed pulse shapes are established. Actually, Figs. 1(b)—
1(d) already establish that a proper theory of adiabatons
can be given, because the same figures also show the an-
alytic solutions we have found, superimposed on the nu-
merical solutions. The theory makes predictions so close
to the numerical solutions that the graphs are practically
indistinguishable. Now we will present the theory and its
predictions.

We have found the theory to be tractable under two
interesting conditions: First, the fields can be nearly
arbitrary as long as they permit the following two-pulse
adiabaticity relation to be satisfied:

Ve  9Vp
or aT

where V2 denotes the total pulse energy density, V? =
V2 + V. Note that it is easy to satisfy (3) by making

Vi vV, < V3, 3)
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either or both of the pulse amplitudes large. Second,
the input pulses should be injected in counterintuitive
order [8,9], and this mandates that pulse V,, acting on the
initially “empty” variables g and A is turned on before
pulse V,, e.g., as shown in Fig. 1(a). Under these two
conditions the response of the medium can be very well
approximated by the solutions

i 'V i aV,

=V, V, = —— = — — —

F=W/v. g V,or V.V, a1 V
h=-V,/V. ()]

Given (4), the vector ¥({,7) = [f,g,h] is one of the
three adiabatic eigenvectors of (2) [10]. Because of the
counterintuitive pulse turn-on it is the only eigenvector
smoothly connected to the initial vector ¥({,7 = —») =
[1,0,0]. Note that the atomic solutions (4) allow for
a significant dynamical rearrangement of atomic level
populations.

By inserting solution (4) into the field equations (1), we
obtain a novel pair of coupled nonlinear wave equations:

3 1 8V,
—Va=__———_a
Yz Vorv (5a)
d, __1aV
a¢ V' =Ty e v (5b)

Note that the relaxation parameter y plays no role in these
equations. These two equations are nonlinearly coupled

through the variable V({,7) = 4/V2 + V2. One can show
from (5) that V does not depend on ¢, which means
that V is determined by the input fields. If we change
from 7 to a new variable Z(r) = [T d7' V2(0, '), the
equations simplify and can be solved analytically. The
exact solutions are

Va(¢,7) = V(0,7) Fo[Z(7) — {] (6)
and similarly for V,. The functional form of
F, is given directly from the input fields via

Fu[x] = V,[0,Z7(x)]/V[0,Z"'(x)]. Here Z~!(x) denotes
the inverse function of Z. We point out that because of
the nontrivial dependence of Z on 7 due to the initial
pulse shapes, neither of the fields necessarily propagates
with invariant shape even though their individual energies
E, and E, are conserved.

There are important special cases, such as the one
adopted for our numerical example, which allow for
a propagation into shape-invariant (adiabaton) pulses.
These cases occur if the input fields V,(0,7) and V,(0, 7)
are chosen such that V is constant after a certain time 7.
Then, for 7 = T the integral Z(7) can be solved: Z(7) =
B%r + @, where B is the long-time amplitude of V,
(as in our numerical example) and the constant « is
determined by the early pulse forms before 7. The time
T corresponds to a characteristic propagation distance of
Z(T) = [T, dr'v20,7") = Z, + [T, dr' VO, 7") after
which the pulse reshaping is completed. This length is
required for the initial pulse V,(0,7) to evolve into its

shape-preserving adiabaton:

Vo({,7) = BF,[B*r + @ — (] forr=T. (7)

The adiabaton propagates with a laboratory-frame velocity
u given by 1/u =1/c + u/B?, which may be much
smaller than the vacuum speed of light.

In contrast to usual types of steady states which do not
depend on initial conditions, adiabatons are specified by
the input pulse forms. Different input pulses evolve into
different adiabatons as described by Eq. (7). This novel
feature is illustrated in Fig. 2. The input field V, is a
sequence of three distinct signals. Each of the signals
evolves into its corresponding loss-free propagating adia-
baton. Please note that the formed adiabatons do not over-
lap and that they preserve the distinct “character” of the
input signals. The second field V,, (dashed graph) mimics
the input pulses which provides for applications in optical
transmission a quite useful redundancy.

Predictions arising from our coupled nonlinear wave
equations (5), including particularly the arbitrary pulse-
shape option, appear to be testable in the optical domain
with two-color laser experiments. Many two-field three-
level laser propagation experiments [10] have been per-
formed recently in the pump-probe regime (V, < V,),
and some misleading similarities exist between adiabatons
and matched pulses of electromagnetically induced trans-
parency (EIT). In contrast to the identical envelopes of
EIT matched pulses, as discussed in [12], adiabatons are
predicted to have the opposite character—complementary
envelopes. More important, adiabatons occur in a differ-
ent parameter regime. The assumption of fully adiabatic
behavior, rather than overdamped behavior of g, was the
novel step we used to obtain the nonlinear equations (5).
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FIG. 2. Propagation of a three-pulse field V,. Note that the
three formed adiabatons (bottom) have a clear correspondence
to the input signals (parameters as in Fig. 1).
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All length and time scales for EIT pulses depend explic-
itly on vy, whereas the physics of adiabatons is indepen-
dent of y or detuning. However, although the phenomena
are distinct, the laser frequencies and atomic media used
for EIT experiments should also be compatible with adia-
baton experiments. It is simply necessary that two-pulse
experiments be designed for the case in which the two
Rabi frequencies are of comparable strength (V, = V,)
such that reshaping effects become important, an accessi-
ble regime but not studied to date.

Finally, regarding our proposed optical tests, it is
important to recognize that damping processes more
general than contained in (2) will actually be present.
Therefore, we have checked how our predictions are
altered by the inclusion of additional loss mechanisms,
such as radiative decay and collisional dephasing of f
and h, as well as g. This is possible only by going to
a density matrix formalism, and we have done this. In
the case radiative decay is included we found that even in
cases where the lifetime is as short as the pulse duration,
the propagating pulses were almost unaffected. A larger
influence on the results could occur due to collisional
influences on f and h, if the dipole relaxation times
were comparable to the temporal pulse width, but such
relaxation times are typically much longer.

To summarize, we have discovered novel two-pulse cou-
pled nonlinear wave equations that are exactly integrable.
The solutions, so called “adiabatons,” are generated from
initially nonideal pulses after a characteristic propagation
distance. Adiabatons have the highly unusual property for
shape-invariant pulses that, depending only on the input
fields at the entry surface of the medium, they can take ar-
bitrary shapes. 1t appears that these novel nonlinear exci-
tations may be detectable in optical two-color experiments.
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