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We extend the Zipf approach to analyzing linguistic texts to the statistical study of DNA base pair
sequences and find that the noncoding regions are more similar to natural languages than the coding
regions. We also adapt the Shannon approach to quantifying the “redundancy” of a linguistic text in
terms of a measurable entropy function, and demonstrate that noncoding regions in eukaryotes display
a smaller entropy and larger redundancy than coding regions, supporting the possibility that noncoding

regions of DNA may carry biological information.

PACS numbers: 87.10.+e, 05.40.4j, 06.50.—x, 72.70.4+m

Recently there has occurred an explosion of activity on
the interface between statistical mechanics and biological
physics [1-4]. One attractive problem concerns applica-
tions of statistical mechanics to the sequence of base pairs
forming DNA [2]. An intriguing puzzle is related to the
fact that in higher organisms, only a small fraction of the
DNA sequence is used for coding proteins; the possible
function—if any—of the noncoding regions remains un-
clear [5]. In this Letter, we find that noncoding sequences
have certain statistical features in common with natural
languages.

A remarkable feature of languages is Zipf’s law [6]. In
the Zipf analysis, one calculates the histogram that gives
the total number of occurrences of each word in a text. If
all the words in the text are arranged in rank order, from
most frequent to least frequent, then such a histogram is
found to be linear on double logarithmic paper, with a
slope —¢, with £ = 1 for all languages studied. Attempts
to understand the origin of the Zipf law are connected to
the hierarchical structure of language [7].

A second common feature of languages is redun-
dancy: Letters or even entire words can be omitted or
changed without the text becoming nondecipherable; e.g.,
a text with typing errors does not become unintelligible.
The notion of redundancy was quantified in the classic
work of Shannon [8], who introduced the concept of the
entropy from which the redundancy can be computed.

An open question is the biological role of the apparently
“silent” noncoding regions of DNA sequences. For this
reason, it is natural to enquire whether there are linguistic
features of these noncoding sequences. Previously, lin-
guistic analysis has been applied primarily to the coding
regions [9,10].

In order to adapt the Zipf and Shannon analyses to
DNA, the concept of word must first be defined. In the
case of coding regions, the words are the 64 3-tuples
(“triplets”) which code for the amino acids, AAA, AAT,
..., GGG. However, for noncoding regions, the words are
not known. Therefore we begin by considering the word
length n as a free parameter, and perform analyses not
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only for n = 3 but also for all values of » in the range
3-8. The different n-tuples are obtained for the DNA
sequence by shifting progressively by 1 base a window
of length n; hence, for a DNA sequence containing L
base pairs, we obtain L — n + 1 different words. For the
DNA alphabet of 4 characters (A,C,G,T), the number of
possible n-tuples is 4”.

To avoid any bias in DNA sequence selection, we per-
formed Zipf analysis for each of the 37 sequences of
eukaryotes, eukaryotic viruses, prokaryotes, and bacterio-
phages comprised of more than 50000 base pairs (bp)
apiece, from GenBank Release No. 81.0 (15 February
1994). In addition, we analyzed bacteriophages A and
T7 (which are just under 50000 bp), as well as the re-
cently published C. elegans sequence comprising 2.2 X
108 bp [11].

Frequency tables of n-tuples have been used to build
reference tables to construct successful coding sequence
finder algorithms [12]. Here, we study the functional
form of the “word” frequency versus the rank in analogy
to the Zipf analysis of natural languages. To implement
the Zipf analysis, we first rank order the total number
of occurrences of each n-tuple, and then we plot their
relative occurrence against rank. We analyzed each of
the sequences separately, as well as grouping them by
category (Table I). Figure 1 shows the Zipf plot for the 14
different sequences of mammalian origin from GenBank
No. 81.0. These sequences, comprising 1.1 X 10 bp, are
mainly noncoding (4.7% coding regions). The Zipf plot
is linear over 2 decades, with slope ¢ = 0.283 = 0.002,
where the error bars represent one standard deviation.
If we weight the 14 separate sequences equally by
averaging together the ¢ values for each sequence, we
find 0.32 + 0.04. We next compare the Zipf analysis
for a single representative sequence that is primarily
noncoding [Fig. 2(a), top curve] and one that is primarily
coding [Fig. 2(a), bottom curve]. The Zipf exponent
of the noncoding sequence ({ = 0.362 * 0.003) is 76%
larger than the Zipf exponent for the coding region (¢ =
0.206 * 0.002).
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TABLE I. Linguistic analysis of the 37 sequences in GenBank Release No. 81.0 of 15 February 1994 that exhibit more
than 50000 base pairs (bp) apiece: eukaryotes, eukaryotic viruses, prokaryotes, and bacteriophages; also shown are C. elegans
and bacteriophages A and T7. These 40 sequences are partitioned into groups: Group IA contains 14 sequences from
mammals (GenBank accession codes are HSG6PHDH, HSMHCAPG, HUMGHCSA, HUMHBB, HUMHDABCD, HUMHPRTB,
HUMMMDBC, HUMNEUROF, HUMRETBLAS, HUMTCRADCV, HUMVITDBP, MMBGCXD, MUSTCRA, and RATCRYG).
Group IB contains the 74 subsequences comprising part of the recently reported [11] 2.2 X 10° bp sequence of chromosome
IIl of C. elegans, and 3 sequences of invertebrate (CEC07A9, CELTWIMUSC, and DROABDB). The sequence DROABDB
has been analyzed separately as information about putative coding regions is still not available. Group IC consists of the
315338 bp yeast chromosome III sequence (SCCHRIII). Group II contains 11 sequences of eukaryotic viruses (ASFV55KB, EBV,
HE1CG, HEHCMVCG, HEVZVXX, HS1ULR, HSECOMGEN, HSGEND, THICG, VACCG, and VVCGAA). Group III contains
7 sequences of bacteria (BSGENR, ECO110K, ECOHU47, ECOUWS82, ECOUW85U, ECOUW87, and ECOUWS9), while group
IV contains 3 sequences of phage (LAMCG, MLCGA, and PODOT7). The groups are arranged in increasing order of percent of
coding regions. The exponent { and the r? coefficient are obtained by least squares fit to the data over the range 1-1000. The
quantity R(4) refers to the percent redundancy for a typical value of n, n = 4.

Length % coding e re R(4)
I. Eukaryotes
A. Mammals (14 sequences)
All 1078 100 5 0.283 = 0.002 0.98 2.7
Coding 50687 100 0.208 * 0.004 0.98 2.1
Noncoding 1027413 0 0.289 = 0.002 0.98 2.8
B. Invertebrates
1. C. elegans
Complete sequence 2176983 29 0.465 = 0.002 0.99 44
Coding 633029 100 0.244 = 0.004 0.93 2.8
Noncoding 1543954 0 0.537 * 0.003 0.98 5.6
2. Other invertebrates (3 sequences)
All 120966 32 0.403 = 0.004 0.99 38
Coding 38361 100 0.21 = 0.01 0.91 2.9
Noncoding 82605 0 0.477 * 0.006 0.98 5.1
C. Yeast chromosome III
Complete sequence 315338 67 0.289 = 0.003 0.98 24
Coding 211091 100 0.225 * 0.005 0.95 2.0
Noncoding 104 247 0 0.391 * 0.005 0.98 4.0
II. Eukaryotic viruses (11 sequences)
All 1616928 84 0.263 = 0.002 0.98 0.8
Coding 1361411 100 0.194 = 0.001 0.98 0.5
Noncoding 255517 0 0.362 + 0.003 0.99 1.5
III. Prokaryotes (7 sequences)

All 784 344 83 0.203 *= 0.002 0.97 1.3

IV. Bacteriophages (3 sequences)
All 140735 87 0.158 *+ 0.003 0.97 0.8

Of further interest are those sequences possessing both
coding and noncoding regions of sufficient length to
permit accurate statistical analysis; in these we are able
to analyze the coding and noncoding regions separately,
and we find that the Zipf exponent for the noncoding
region is about 50% larger than that for the coding
region. Such analysis for the 2.2 X 10° bp sequence of
C. elegans chromosome III is shown in Fig. 2(b) and for
the complete 315000 bp sequence of yeast chromosome
III in Fig. 2(c).

The results of the Zipf analysis for all 40 DNA se-
quences analyzed are summarized in Table I. The aver-
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ages for each category support the observation that { is
consistently larger for the noncoding sequences, suggest-
ing that the noncoding sequences bear more resemblance
to a natural language than the coding sequences. To con-
firm that our methods indeed work on “natural language,”
we use the same algorithm developed for DNA sequences
to analyze actual texts. First, we analyzed a collection of
articles taken from an encyclopedia comprising 500 000
letters. We found a power-law behavior using n-tuples
instead of real words, but we find ¢ = 0.57, smaller than
the value ¢ = 0.85 found for Zipf analysis of the same
text using the actual words. Moreover, we find roughly
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FIG. 1. Double logarithmic plots of the relative number of
“word” occurrences of 6-tuples as a function of the rank of the
word for the 14 different sequences of mammalian origin from
GenBank No. 81.0. Similar results are found for n-tuples with
n ranging from 4 to 8. The straight line is the best fit of the
data lying in the range 1 to 1000. The exponent { = 0.283,
significantly larger than the value { = 0 expected for a control
sequence of random numbers.

C. elegans
4—=a non-coding
o—-o coding

the same value of ¢ for a range of values of n from
3toS.

We also used the same DNA algorithm on a binary
executable file of the Unix Operating System containing
9000000 bits, which is analyzed in terms of 12-tuples
(0 and 1). The Zipf plot is linear over roughly three
decades from rank 1 to rank 1000, and we find ¢ =
0.77 * 0.05. Finally, we analyzed a “control,” consisting 10
of a sequence of bits chosen with equal probability to be
0 or 1; the relative occurrence is the same for all words,
and the Zipf plot has the expected slope of zero (¢ = 0). 10? ; ‘ *

The redundancy is a manifestation of the flexibility of
the underlying code. To quantitatively characterize the
redundancy implicit in the DNA sequence [13], we utilize
the approach of Shannon, who provided a mathematically
precise definition of redundancy. Shannon’s redundancy
is defined in terms of the entropy of a text—or, more pre-
cisely, the “n entropy” H(n) = — Y., p; log, pi, which
is the entropy when the text is viewed as a collection of
n-tuple words [8]. The redundancy is defined through
as R = lim,—« R(n), where R(n) =1 — H(n)/kn; here
k = log,4 = 2 [14]. We calculated the Shannon n en-
tropy H(n) for n = 1,2,...,6. The maximum value of n
for which it is possible to determine H(n) is n = 6—even 10
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FIG. 2. Zipf analysis of 6-tuples of DNA sequences. (a) The first (bottom curve) is the longest sequence of bacteria DNA
available (ECOVW89, 176 195 bp, 82.1% of which are coding regions), while the second is the longest sequence of mammalian
DNA available (HUMRETBLAS, 180000 bp, 1.5% of which are from coding regions). The primarily rich coding sequence has
a lower value of ¢ (¢ = 0.206) and shows an approximately linear behavior only over roughly 1 decade, while the primarily
noncoding sequence has ¢ = 0.362, 76% larger, and, moreover, displays linearity over roughly 2 decades. (b) Separate analyses
of the noncoding (1543954 bp) and putative coding (633029 bp) regions of the recently published 2.2 X 10% bp C. elegans;
the Zipf exponent for the noncoding regions ({ = 0.537 * 0.003) is 2.2 times larger than the Zipf exponent for the coding
regions (¢ = 0.244 * 0.004). (c) Separate analyses of noncoding and putative coding regions of the 315338 bp sequence of yeast
chromosome III; the Zipf exponent for noncoding regions (£ = 0.391 * 0.005) is 1.7 times larger than the Zipf exponent for the
coding region (¢ = 0.225 * 0.005). We note that for sequences composed of primarily coding regions, the data are well fitted by a
logarithmic function [10]. We also find that simple explanations, such as a two-step Markov process, cannot fully account for the
observed Zipf-like behavior.
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FIG. 3. The Shannon entropy analysis consists of calculating

the probability p; of a given n-tuple and forming the functions
H(n) and R(n). Shown in (a) is the percent redundancy
[100R(n)] for the same DNA sequences shown in Fig. 2(a).
The redundancy is larger for the primarily noncoding sequence.
In (b) we show the percent redundancy for the coding (squares)
and noncoding (triangles) portions of the C. elegans 2.2 X
106 bp sequence. An approximate relation between the Zipf
behavior and redundancy can be obtained if a truncated power
law is assumed for the Zipf distribution. If the amount of used
n-tuples is increasing with n exponentially (ro x e where ry is
the cutoff observed in the Zipf plot), then the redundancy will
be asymptotically given by R(n) = 1 — [log, ro + F({)1/2n,
where F({) can be calculated analytically.
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for very long sequences (e.g., C. elegans)—due to the ex-
tremely slow convergence to the final value. For shorter
sequences, reliable values of H(n) are obtainable only up
to a value of n less than 6.

Figure 3 shows R(n) for selected sequences. For
sufficiently high values of n (for example, n = 4), we see
that the redundancy is consistently larger for the primarily
noncoding sequences. In fact, for most of the sequences
consisting primarily of coding regions, we find that R(n)
is quite close to the value R(n) = 0 which we find for a
control sequence of random numbers.

Thus we find that noncoding sequences show two
similar statistical properties to those of both natural and
artificial languages: (a) Zipf-like scaling behavior, and
(b) a nonzero value of Shannon’s redundancy function
R(n). These results are consistent with the possible
existence of one (or more than one) structured biological
language(s) present in noncoding DNA sequences.
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