
VOLUME 73, NUMBER 23 PHYSICAL REVIEW LETTERS 5 DECEMBER 1994

Systematic Inclusion of High-Order Multispin Correlations for the Spin-2 XXZ Models
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We apply the microscopic coupled-cluster method (CCM) to the spin-- XXZ models on both the
one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation
scheme of the CCM developed by us previously, we carry out high-order ab initio calculations using
computer-algebraic techniques. The ground-state properties of the models are obtained with high
accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to
study their quantum critical behavior in a systematic and unbiased manner.
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Over the last few years the microscopic coupled-cluster
method (CCM) [1]has successfully been applied to many
lattice Hamiltonian systems [2—5], producing the best or
among the best results in terms of accuracy and power.
For example, in the so-called SUB2 approximation dis-
cussed below, the exact analytic solution of the corre-
sponding CCM equations often exhibits a terminating
point. This is clearly demonstrated [3] to correspond to
a physical critical point of the system by the behavior
within the same approximation of such calculated quanti-
ties as the order parameter, correlation functions, and the
gap in the excitation spectrum. Recently we have devel-
oped several efficient, systematic approximation schemes
of the CCM specifically tailored for use with lattice sys-
tems [3,4].

In this Letter, we report our new results from an
ab initio high-order calculation for the spin-2 XXZ mode1
on both the one-dimensional chain (1DC) and the two-
dimensional square lattice (2DSL). In particular, we have
obtained with high accuracy the ground-state energy,
the anisotropic susceptibility (i.e., the second-order en-
ergy derivative with respect to the anisotropy parame-
ter), and the staggered magnetization, as functions of the
anisotropy parameter. Furthermore, since these physical
quantities are obtained as functions of the anisotropy pa-
rameter, we are able to study the possible quantum phase
transitions of the anisotropic models in a systematic, un-
biased manner. This is in contrast to the series expansion
technique [6], in which one has to make a Pade approxi-
mation or to assume a particular critical behavior (from
the spin-wave theory of Anderson [7], for exatnple) for
those physical quantities from the outset.

Since the details of our CCM analysis have been
published elsewhere [3], we only outline the specific
approximation schemes employed here. The spin system
under consideration is the so-called spin-2 XXZ model
described by the following Hamiltonian:

N z

H = g g Est st+ + (st st+ + s( s(~ ), (1)
I=1 p=1

where the index I runs over all N ( ~) lattice sites with
the usual periodic boundary condition imposed, the index

p runs over all z nearest-neighbor sites, the operators
st and sl (= sl ~ is~) are spin operators, and b, is the
anisotropy parameter. The special case 5 = 1 gives the
isotropic Heisenberg model, which, with spin s =

2 on
the 2DSL, has been under intensive study over the last six
years or so [8].

We first consider the case of 5 ca. Equation (1) then
reduces to the Ising model with a classical ground state
(i.e., the Neel state) given by two alternating sublattices,
one with all spins down, the other with all spins up. For
clarity, we use the index {i}exclusively for the spin-down
sublattice and the index {jj exclusively for the spin-up
sublattice. Naturally, we choose the Neel state as the
model state (4) in our CCM analysis and incorporate the
quantum correlation effects by considering the excitations
with respect to this model state. The elementary operators
of these excitations are clearly given by the spin-raising
operators s,

+ on the i sublattice and the spin-lowering
operators s, on the j sublattice. The CCM ansatz for
the ground ket state is therefore given by

NI2

[W)=e )4), S—= gS„, (2)
n=l

with the correlation operators S2„defined by

&I &2" &n~JI J2" Jn

(3)

where we have restricted ourselves to the conserved sector
of zero z component of total spin, st,„~ (= g, , st'), by
including only those configurations with equal numbers
of spin flips on both sublattices.

The ground-state energy and the c-number coefficients
{S;, ; .. .„) of Eq. (3) are determined by taking the
inner products of the Schrodinger equation in the form
e He [4') = Es(4), first with the model state itself and
second with the states constructed by acting on )4) with

0031-9007/94/73(23)/3157(4)$06. 00 0& 1994 The American Physical Society 3157



VOLUME 73, NUMBER 23 PHYSICAL REVIEW LETTERS 5 DECEMBER 1994

where the expansion series terminates at the fourth order
[3]. Therefore, once an approximation for S is chosen,
no further approximation is necessary in order to obtain

and solve the coupled set of Eqs. (5). For the spin-2 XXZ
1

model of Eq. (1), it is easy to derive the following exact
equation for the ground-state energy per spin:

F.g—= ——(b, + 2bi),
N 8

(7)

where b~
—= S;;+~ is the nearest-neighbor pair correlation

coefficient, and z = 2, 4 for the 1DC and 2DSL models,
respectively. We note that b& is independent of both the
index i and index p by the lattice symmetries.

We clearly need an approximation method to truncate S
for any practical calculation. The three most commonly
used truncation methods are the SUBn scheme, in which
all correlations involving only n or fewer spins are re-

tained; the simpler SUBn-m subapproximation scheme,
where only SUBn correlations spanning a range of no
more than m adjacent lattice sites are included, and fi-

nally the systematic local LSUBm scheme, which includes
all possible multispin correlations over a specified locale
on the lattice, where m is the nominal index that char-
acterizes the size of the given locale. In each case, the
remaining correlation coefficients are set to zero. For
example, the LSUB4 scheme for the 1D spin-2 model

1

retains three independent configurations, represented by
b&, b3, and g4, respectively [3]. In particular, b~ corre-
sponds to the nearest-neighbor two-spin-flip configuration
mentioned before, b3 to the third-nearest-neighbor two-

spin-flip configuration, and g4 to the spin-flip configura-
tion of four adjacent spins. The corresponding LSUB4
coupled equations are given by [3]

1 —2kb, —3b, + 2b(b3 + 2b~ + 2g4 = 0, (8)

b] —4hb3 —4b)b3 + g4 = 0, (9)
—5(b, + 2b, b3) + g4(b, + 4b) + b3) + 2b)b3 = 0.

(10)
After solving these coupled equations, we obtain the
ground-state energy by substituting b& into Eq. (7).

For the higher-order approximations the derivation of
the coupled equations becomes very tedious. We have
developed our own software using c++ and FORTRAN to

the corresponding correlation operators in S2„. We thus
find, respectively, the ground-state energy F.„,

F = (&b)e He )4), (4)

and the coupled set of equations for [S;,

(4~s; s, , s, s+s+, . s+e He ~4) = 0, (5)

with n = 1, 2, ..., N/2.
Each of the above equations always involves the

Hamiltonian in a similarity-transformed form, namely,

1
e He = H + [H, S] + —[[H, S],S] +, (6)

automate this process. Also, we have used standard com-
puter algebra packages to check our results independently.
For the LSUBm schemes, we have derived and solved the
coupled equations up to m = 10 for the 1DC case and up
to m = 6 for the 2DSL case. It should be noted that all of
our calculations were done on microcomputers. The num-

bers of independent spin-Hip configuration coefficients re-
tained in the these two cases are 81 and 72, respectively.

Some of our results for the 1DC model have already
been published [3]. In particular, we have shown that for
a given value of m the LSUBm scheme reproduces exactly
the corresponding 2mth order of large-5 perturbation
theory and that the LSUBm scheme also gives good
results in the planar region ((A~ & 1) where perturbation

theory is not valid. The new high-order calculations
further push the numerical results closer to their exact
counterparts obtained by the Bethe ansatz [9],over a wide

range of 5 (0 & 5 & ~). In particular, at the isotropic
point (b, = 1), the LSUB10 scheme yields —0.4420 for
the ground-state energy per particle. We have made a
naive attempt to extrapolate our results for the LSUBm
scheme with m = 4, 6, 8, 10, and find that a I/m2 rule
seems to fit them very well. The ground-state energy per
particle after this extrapolation yields —0.4431 +. 0.0001
from a least-squares fit, while the exact result by the Bethe
ansatz [9] is —0.4432 to the accuracy of four significant
figures.

In Fig. 1 we show some of our results for the ground-
state energies of the 2DSL model, together with a

-O.S

-06 - L

-0.7 .

-0.9
0

FIG. 1. Ground-state energy per spin as a function of 6 for
the spin--, XXZ model on the 2DSL. Shown are the numerical

results of the LSUBI scheme with m = 2, 4, 6 and of a Monte
Carlo calculation of Ref. [101.
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Monte Carlo calculation [10] on an 8 X 8 lattice for
comparison. One sees that the results for our high-
order calculations are in excellent agreement with the
Monte Carlo calculations over a wide range. At the
isotropic point (5 = 1), our best numerical results for
the ground-state energy of the 2DSL model, obtained
from the LSUB6 scheme, is —0.6670. We find that
the 1/m2 rule also fits our 2D LSUBm data well. The
extrapolated result is —0.6691 ~ 0.0003. This number
compares well with the values —0.66934 ~ 0.00004 from
a large-scale Monte Carlo calculation by Runge [11]and
—0.6694 + 0.0001 from the series expansion techniques
[6]

The more interesting feature from our 2DSL LSUBm
calculations is the appearance of terminating points in
the real solutions of the LSUBm equations for m &
2, as indicated in Fig. 1, beyond which the solution
becomes complex. This behavior is totally different from
that observed in the 1DC model where, unlike in the
SUB2 scheme discussed above which retains two-spin
correlations of arbitrarily long range, there is no evidence
of such terminating points in the localized LSUBm
scheme at any value m ~ 10. Since we have derived
the corresponding coupled equations for a given LSUBm
scheme as closed analytical forms with 6 as a parameter,
we can straightforwardly study the terminating points by
taking the derivatives on both sides of the coupled set
of equations [e.g., Eqs. (8)—(10)] with respect to b, and
solving directly for the derivatives of the coefficients.
From Eq. (7), we define the second-order derivative of the
ground-state energy as the anisotropic susceptibility g„

82(Eg /N)

A +B (1 —x)'~ +C (1 —x)
+ D(1 —x)~ +

where x —= 5 /A.

(13)

The numerical results for g, as a function of 5 are shown
in Fig. 2 for the 1DC and 2DSL models, respectively. It is
clear from the figure that there is no singular behavior for
the 1DC model. By comparison, the exact calculation [9]
gives an essential singularity at 5 = 1, with the result that
any finite order of derivative with respect to 6 is indeed
continuous. However, the anisotropic susceptibility for
the 2DSL model clearly shows a singular behavior (except
for the low-order LSUB2 scheme). Furthermore, although
the values of the terminating points 5 are different for
the LSUB4 and LSUB6 cases, both schemes yield similar
critical behavior, namely,

g, ~const X (1 —x) ", x~ 1, (12)
with A = 3/2, and x =—6 /A. This clearly suggests
that Eg/N for the 2DSL model within the LSUBm
approximation has the following expansion near the
terminating point:
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FIG. 2. The second-order derivative of the ground-state en-
ergy per spin with respect to 5 for the 1DC and 2DSL models
as functions of h. Shown are the results of several LSUBm
schemes.

We note that the spin-wave theory of Anderson [7]
gives the exponent A = 1/2. It is not difficult to show
that our full SUB2 scheme also yields the same value [3],
whereas from the above we see that the LSUBm schemes
yield A = 3/2. In order to understand this difference,
we consider the SUB2-m scheme of the 2DSL model
with m ~ 14. We observe that the SUB2-I scheme also
has the singular behavior described by Eq. (13), yielding
A = 3/2. However, the coefficient B 0 as m

Therefore, the fourth term in Eq. (13) is the dominant
singular term, yielding A = 1/2 for the full SUB2 scheme
(i.e., the SUB2-~ scheme). Furthermore, we notice that
the coefficients B also seem to decay by a 1/m2 rule
as m increases in the SUB2-m scheme. It seems likely
that, in the LSUBm scheme, the B coefficients also
decrease as m increases, and the first singular term has the
coefficient D as m ~, so that A = 1/2 is recovered.
Although we only have the LSUB4 and LSUB6 schemes
for consideration, the results confirm that the value of
B in the LSUB6 scheme is much smaller than that
of the LSUB4 scheme. Therefore, we expect that the
exact result, namely the LSUBm scheme with m

has the value of A = 1/2. We will present the details
of the expansion Eq. (13) for our various approximation
schemes elsewhere.

While our CCM analysis seems to agree with spin-wave
theory [7] for the critical exponent A, there does seem
to be a real difference in the corresponding predictions
for the value of the critical point 6,. We first consider
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the SUB2-m scheme. As given previously [3], the
terminating point is 6 = 0.7984. The terminating point
in the SUB2-m scheme rapidly approaches this value as
m increases. Interestingly, the I/m rule also seems to fit
well. We attempt to apply the 1/m'- rule for the LSUBm
scheme also. %'e thus obtain the predicted critical point
as 5,. = 0.92 ~ 0.01. Although this is clearly smaller
than the value 1 predicted by spin-wave theory [7], the
quoted error is merely that of least-squares fit at this
level, and we cannot yet preclude agreement when higher-
order corrections in the LSUBm scheme (i.e., m ) 6) are
included in the extrapolation.

Finally, we calculate the staggered (sublattice) mag-
netization M' —= (s,')/s for the XXZ models, where the
expectation value is taken with respect to the ground
ket and bra states within the same CCM approximation
schemes [3]. Our results show, as expected, that there is
clearly a difference between the 1DC and 2DSL models.
For the 1DC case, the staggered magnetization shows no
singular behavior at all, even for the LSUB10 scheme.
However, for the 2DSL model, the singular behavior is
clearly seen for all high-order schemes beyond the LSUB2
scheme. For the 2DSL model, at the isotropic point,
M' = 0.8514, 0.7648, 0.7278 in the LSUB2, LSUB4, and
LSUB6 schemes, respectively. From these numbers we
obtain M' = 0.68 ~ 0.01 by extrapolation, using a I/m
rule (which was found to work well for the SUB2-m
scheme). This value is somewhat bigger than the cor-
responding values 0.606 from spin-wave theory [7] and
0.62 ~ 0.02 from series expansion techniques [6], al-

though it agrees well with the best of the corresponding
Monte Carlo results, which vary between 0.68 ~ 0.02 and
0.62 ~ 0.04 [11].

In conclusion, our high-order CCM analyses not only
produce with high accuracy the ground-state properties
for the spin-2 XXZ models, but they also enable us to

1

study the the quantum phase transitions in a systematic,
unbiased manner. They clearly show that the LSUBm ap-
proximations themselves represent a natural extension of
perturbation theory. In effect, they comprise a well-
defined analytical continuation or resummation of the per-
turbation theory results within the context of a natural
and consistent hierarchy of approximations. More signif-
icantly, this hierarchy is capable of predicting a possible
quantum phase transition. Another calculation under con-
sideration is the energy gap of the excited states near the
critical point in the LSUBm scheme. Our result [3] for the
energy gap in the SUB2 scheme is quite similar to that of
spin-wave theory, but higher-order multispin correlations
have been proved to be significant [6,12].

Finally, we note that the combination of the CCM as
a theoretical framework and the use of computer alge-
braic techniques to implement it at high orders of approxi-
Jmation has resulted in a formalism which is capable for
the 2D spin-lattice models of attaining numerical results
with a precision comparable to those from the much more
computationally intensive state-of-the-art Monte Carlo
simulations. It will be of great interest to apply our
techniques to similar electron-lattice problems of interest
in high-temperature superconductivity which involve va-
cancies on the lattice (e.g. , the Hubbard model), where
Monte Carlo algorithms are not easily applicable, due to
the infamous fermion sign problem.
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