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We investigate the transport properties of insulating phases in the 2D electron system of high-

mobility AlGaAs/GaAs heterostructures of Corbino geometry at very low temperatures.

We find

that the nonlinear current-voltage characteristics for insulating phases in the integer and fractional
quantum Hall regime and for a low-density insulating phase are very similar. The behavior of these
characteristics with changing temperature and filling factor unambiguously points to the percolation
metal-insulator transition as the cause for all insulating phases investigated. We propose a metal-
insulator phase diagram in the (B, N,) plane based on our experimental data.

PACS numbers: 71.30.+h, 73.20.Dx, 73.40.Kp

The metal-insulator transition at low filling factors in
a 2D electron system of high-mobility AlGaAs/GaAs
heterostructures has been investigated in a number of stud-
ies (see, e.g., [1-5]) by using various experimental tech-
niques. In the majority of the reports the transition into an
insulating phase is attributed to the formation of a pinned
Wigner crystal. However, some doubts in this interpre-
tation were expressed, e.g., in Ref. [6]. Optical investi-
gations strongly suggest that in high magnetic fields the
2D electron system becomes strongly inhomogeneous; in
photoluminescence spectra there coexist two lines, one of
which is caused by radiative recombination of 2D electrons
from metallic regions [4,7,8] and the other proves the ex-
istence of insulating islands in the electron system. The
conduction of an inhomogeneous macroscopic system is
determined by the coverage of the sample with metallic
and insulating areas, respectively. In this case the metal-
insulator transition must be discussed as a percolation
problem. Here we introduce a method based on investi-
gations of the current-voltage characteristics which makes
it possible to compare the transport properties of insulat-
ing phases realized in the integer and fractional quantum
Hall regime and at low electron densities in AlGaAs/GaAs
heterostructure samples. Our experimental results provide
strong evidence for the percolation nature of all metal-
insulator transitions studied.

Let us first consider the definition of insulating phases
in a 2D system. As known, in the integer and fractional
quantum Hall regime the Hall conductivity o, is quan-
tized and the dissipative conductivity o,, tends to zero
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at low temperatures. The Hall conductivity is finite due
to the existence of extended states below the Fermi level
that are able to carry dissipationless Hall current, as has
been shown in experiments on charge transfer in Corbino
samples [9]. It is reasonable to call such a state of the
2D electron system an insulator because the Fermi level
lies in localized states and electron transport in the direc-
tion of the electric field is absent. Obviously, a so-defined
insulating phase can be characterized by the value of the
Hall conductivity. The insulating phase at low electron
densities corresponds to o, = 0 since in this case the ex-
tended states below the Fermi level are not available [10]
so that both the conductivities o, and o, vanish at low
temperatures.

In our experiments we use Corbino samples made
of two AlGaAs/GaAs wafers (A and B) with mobility
4 =~ 10° cm?/Vs. The spacer layer thickness of these
wafers is 700 and 300 A, and the inner and outer radii
of the Corbino rings are r; = 1.0 mm, r, = 1.02 mm and
ri = 0.2 mm, r, = 0.5 mm, respectively. In the latter
case the samples have a circular gate restricted by radii
rig = 0.3 mm and r;, = 0.4 mm so that a gated region
of 2D layer is separated from the contacts by guarding
rings. Applying a dc voltage between the gate and one of
the contacts, we control the electron density in the gated
region while in the guarding rings it remains unchanged.
On these samples experiments are carried out at different
electron densities, but only in the ranges of a magnetic
field where the conductivity o,, in the ungated region is
metallic.
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We study current-voltage characteristics of an insulat-
ing phase at very low densities as well as of the insu-
lating phases in the fractional and integer quantum Hall
regime corresponding to filling factors v = 2/3,1,2. Mea-
surements were made by a dc technique in the tempera-
ture range 25 mK to 0.5 K and at magnetic fields of up to
16.5 T. We determine from /-V characteristics at lowest
temperature where the nonlinearities are most pronounced
a threshold voltage U, that is defined according to the inset
in Fig. 1. The temperature dependence of the resistance in
the linear part of the /-V characteristics yields an activation
energy E,. The method we propose is based on the fact
that the behavior of the threshold voltage and activation
energy as a function of filling factor at the metal-insulator
transition allows us to establish the nature of this transition
and thereby to discriminate between the possible origins of
the insulating phases.

Typical current-voltage characteristics for the insulating
phase with o, h/e? = 2/3 are presented in the inset
of Fig. 1. As seen from the figure, at a minimum
temperature the initial linear rise of the voltage with
current strongly slows at some threshold voltage U..
(Some authors define two critical voltages, one of which
corresponds to the onset of weak nonlinearities and
the other characterizes the strongly nonlinear regime
[3,6,11,12].) Such a behavior of /-V characteristics is
observed in all insulating phases, while in the metallic
phase the [-V characteristics are linear in the whole
range of currents used. As the temperature increases the
nonlinearities are smeared out (inset in Fig. 1): At lowest
temperatures the resistance in the linear interval of /-V
characteristics obeys the variable range-hopping law while
at higher temperatures the resistance shows an activated
temperature dependence (see inset in Fig. 2). Owing to
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FIG. 1. Activation energy and square root of the critical
voltage U, as a function of magnetic field for the 2/3 quantum
Hall state. Wafer A. Typical current-voltage characteristics
are shown in the inset at B = 8.76 T and T = 25 mK, 60 mK,
74 mK, and 114 mK. The size of points in all figures
corresponds to the experimental uncertainty.
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FIG. 2. Behavior of the activation energy and the critical
voltage for the low-density insulating phase. B = 16.5 T; wafer
B. Inset: Arrhenius plot of the resistance in the linear regime at
B =165T, N, = 4.8 X 10'° cm™2. The value of the resistance
is normalized by aspect ratio.

the growth of the resistance in the linear regime, the shape
of the I-V characteristics for the insulating phase tends to
a steplike function both with decreasing temperature and
when departing from the phase boundary. That is why
we can observe far more pronounced nonlinearities in the
phases with o,,h/e? = 0, 1,2, as compared to those in the
2/3 insulating phase.

Surprisingly, we find that the behavior of both the
threshold voltage and activation energy is the same for all
insulating phases investigated: The dependences of U!/?
and E, on magnetic field (or electron density) are linear
and run to the same point B, (or N.) corresponding to
the mobility edge E. (see, e.g., Figs. 1 and 2); i.e., both
of the values tend to zero as the metal-insulator phase
boundary is approached. We have tested the validity of
these statements at the phase boundary points indicated in
Fig. 3. Thus, from our experiments follows that a critical
electric field F, corresponding to U, is written as

F. = BE>. (1)

The measured values of the coefficient B at different
phase boundaries on the same sample are found to
coincide within experimental uncertainty.

In the case of insulating phases in the integer quantum
Hall regime, we can easily interpret the relation (1) in
terms of the percolation picture [13,14]. (Evidently, the
linear change of the activation energy with filling factor
is determined by the value of density of states near E..
The deviation of E, and U!/? from the linear dependences
in Fig. 2 is due to the drop of the density of states as
the absolute value of Ny — N, increases.) At sufficiently
low temperatures the conduction in the insulating phase is
caused by variable range hopping, while in a cluster the
electron system is metallic. In the vicinity of the mobility
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FIG. 3. Metal-insulator phase diagram in the (B, N,) plane.
The points corresponding to phase boundaries are obtained on
different samples: o, wafer A; M, wafer B; ¢, we took this
data from Ref. [11] regarding that at a minimum temperature
the reciprocal of the conductivity o,, at mobility edge E.
is equal to 10 MQ as follows from our results. The solid
lines are guides to the eye. Vertical lines restrict the regions
a,b,c, and d of a magnetic field for gated samples where o,
in the guarding rings was sufficiently high. Digits indicate the
Hall conductivity in units e?/h for different insulating phases.

edge the average cluster radius, or the localization length
L(E), is expected to diverge with the critical index s:

1
L(E) = —|E — E|"™, 2
(E) ﬂ,,l | 2

where B* characterizes a random potential. At sufficiently
low electric fields the clusters form equipotential areas so
that the energy separation between the mobility edge E.
and the electron energy in a cluster decreases by eFL(EF).
At the critical electric field F. defined by the expression

— Ea — _B_* s+1
Fe= lEn = ¢ B ©)
the electrons reach the mobility edge, which gives rise to
an abrupt increase of the conduction in agreement with
the experiment. [We note that in such a model the energy
eF.L(Er) is equal to E, and can considerably exceed
the base electron temperature.] It is seen that Egs. (1)
and (3) are identical if B* = eB and the critical index
s = 1, which is close to the theoretical value s = 1.3
expected for classical percolation. Hence, the breakdown
of insulating phases can be explained by electric-field-
induced electron delocalization in the classical percolation
picture [15].
Indeed, we expect that at integer filling factors the
properties of 2D electron systems should be similar as

long as the screening of random potential by electrons in
totally occupied Landau levels is negligible. In the case
of the fractional quantum Hall effect, the experimental
results are surprising: the 2D electron system is found
to have very similar properties in both the integer and
fractional quantum Hall regime. Our results also show
that the transition into the low-density insulating phase
is the percolation one and occurs at ». = 0.17.  The
percolation nature of the transition into the low-density
insulating phase is confirmed, in our opinion, by data
on the higher mobility samples where this transition was
initially attributed to the formation of a pinned Wigner
solid. Indeed, in Ref. [11] it was found that for the
low-density insulating phase the imaginary part of the
high-frequency conductivity diverges as Im(o,,) = |B —
B.|™!. Since Im(o,,) is determined by the dielectric
permeability of the system, which is proportional to the
cluster dimension within a percolation picture, the results
[11] are in agreement with our conclusions. We find
additional confirmation in Ref. [7]. From time-resolved
photoluminescence of 2D electrons, one can determine the
metal-insulator transition point, assuming the percolation
character of the transition. According to the percolation
theory, the transition occurs at a magnetic field where
the area of metallic regions is equal to half of the
sample area. Assuming the integral intensity of radiative
recombination from metallic regions to be proportional
to their area, we obtain from data in Ref. [7] ». = 0.19,
which agrees with our observations. We note that in
Ref. [7] insulating regions in the electron system were
associated with the Wigner solid phase. If this were true,
then the nonlinear 7-V characteristics should be explained
by crystal depinning. This starts when the work of the
electric field to shift a crystallite with dimension 4 on
the distance between electrons is equal to the activation
energy E, = eF.d?N!/? (see, e.g., Refs. [16,17]). Hence,
one could expect that near the phase transition F. and E,
should be proportional to each other. However, this is
not the case, as follows from our experiments. Therefore,
we conclude that the origin of the low-density insulating
phase is the localization of electrons in a random potential
rather than the pinned Wigner crystal.

On the basis of our experimental results we propose
a metal-insulator phase diagram in the (B,N,) plane
for high-mobility 2D electron systems (Fig. 3). (Phase
diagrams for low-mobility systems were discussed in a
number of experimental works [14,18—20].) The phase
diagram is not universal in the sense that the exact
position of boundaries changes for different samples.
However, its topology is expected to be universal: each
integer or fractional quantum Hall state corresponds to
a hatched area indicating an insulating phase surrounded
by the metallic phase. The nonmonotonic behavior of
the lowest phase boundary reflects the so-called reentrant
transition into the low-density insulating phase. The
proposed phase diagram is in agreement with the results
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obtained on Si metal-oxide-semiconductor field effect
transistors (MOSFET’s) [14,20] and similar, in principle,
to the diagram discussed in recent theoretical studies [21].

One can expect that with improving sample quality
the coefficient B8 should increase so that the dependence
L(E) given by Eq.(2) will ultimately tend to a &
function. Comparison of the values of B8 for different
samples reveals the expected correlation: On wafer A
(B = 3 V/cmK?) the fractions are more pronounced than
on wafer B (8 = 0.7 V/ecmK?), while on Si MOSFET’s
(B = 0.1 V/cmK?) [14] they are not observed at B <
16 T. Hence, we can introduce the coefficient B, in
addition to the mobility, as a characteristic of the sample.
In contrast to the mobility determined in the metallic
phase when potential fluctuations are well screened, the
B value directly reflects properties of a random potential
when the Fermi level lies within localized states and
screening is less effective.

In summary, we have investigated the behavior of non-
linear current-voltage characteristics for the low-density
insulating phase of AlGaAs/GaAs heterostructures
as well as for insulating phases in the integer and
fractional quantum Hall regime. We find that near the
metal-insulator transition the critical electric field F.
corresponding to the onset of nonlinearities is propor-
tional to the square of the activation energy E, of the
resistance in the linear regime with the same coefficient
B for all the insulating phases. Both F. and E, tend to
zero as the metal-insulator phase boundary is approached.
Comparison of the experimental data on different samples
shows that the value of B correlates with the sample
quality. These results point to the same origin of all
insulating phases and can be interpreted in terms of the
percolation picture in which the breakdown of the insulat-
ing phases is explained by electric-field-induced electron
delocalization. Making use of our results, we propose the
metal-insulator phase diagram in the (B, N;) plane for the
2D electron system of AlGaAs/GaAs heterostructures.
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FIG. 3. Metal-insulator phase diagram in the (B, N,) plane.
The points corresponding to phase boundaries are obtained on
different samples: o, wafer A; M, wafer B; ¢, we took this
data from Ref. [11] regarding that at a minimum temperature
the reciprocal of the conductivity o, at mobility edge E.
is equal to 10 M} as follows from our results. The solid
lines are guides to the eye. Vertical lines restrict the regions
a,b,c, and d of a magnetic field for gated samples where o,
in the guarding rings was sufficiently high. Digits indicate the
Hall conductivity in units ¢?/h for different insulating phases.



