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Does Broken Time Reversal Symmetry Modify the Critical Behavior at the Metal-Insulator
Transition in 3-Dimensional Disordered Systems?
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The critical behavior of 3-dimensional disordered systems without time reversal symmetry is
investigated by analyzing the spectral Auctuations of the energy spectrum. %e show that in the
thermodynamic limit we have two different regimes, one for the metallic side and one for the insulating
side with different level statistics. The third statistics which occurs only exactly at the critical point
is independent of the presence or absence of time reversal symmetry. The critical behavior which is
determined by the symmetry of the system at the critical point should therefore be independent of time
reversal invariance.

PACS numbers: 71.30.+h, 05.45.+b, 64.60.Cn

It is now well known that the introduction of disorder
into periodic structures has dramatic effects on the prop-
erties of the system. In particular, 3-dimensional (3D)
systems exhibit a metal-insulator transition (MIT) as a
function of the disorder. A lot of work [1] has already
been devoted to the study of this phase transition, theoreti-
cally, numerically, as well as experimenta11y. While all
methods seem to agree on the fact that the NIT should
only be characterized by the fundamental symmetries of
the system and that one can expect a second order phase
transition, its description, e.g., with respect to critical dis-
order and critical exponents, still remains a controversial
object of discussions [1].

Theoretically the standard method applied, namely
the 2 + e expansion, for the calculation of the critical
exponents turns out to be inadequate for d = 3 [2,3].
It seems to be a characteristic of several theories for
disordered systems using perturbative methods, like the
nonlinear o. model [4] or the self-consistent theory [5],
to provide quantitative results in the weak localization
regime (i.e., for small disorder) but to fail in the region
of the critical disorder.

Because of this problem numerical investigations in
the frame of the Anderson model of localization have
played an important role in the description of the MIT.
Based on extensive computations by means of the transfer
matrix method (TMM) [6], it is now usually accepted
that the critical exponent is v = 1.4 and is independent
of the distribution chosen in the Hamiltonian [7,8].
This result has been confirmed recently [9,10] using a
completely different method, namely the energy level
statistics method (ELSM). Meanwhile other TMM studies
have been carried out on similar models but with magnetic
field, which changes the symmetry, driving the system
from the orthogonal to the unitary universality class, due
to the break of the time reversal invariance. Surprisingly,
in spite of this change of universality class, the same value

of the critical exponent has been found with and without
magnetic field and that independent of the strength of the
magnetic field [11,12). In this Letter, using the ELSM
which will again turn out to be very suitable fog such a
study, we propose to explain this surprising observation
with symmetry arguments shedding new light on the
problem. Our conclusions are based on our numerical
results for the spacing distribution P(s) and the h3
statistics showing that there is a critical ensemble (CE)
characteristic for the MIT irrespective of the presence or
absence of time reversal symmetry which implies that the
critical exponent should be independent of time reversal
symmetry and then of the magnetic field.

In order to investigate the MIT with magnetic field
we consider the usual Anderson Hamiltonian with an
additional phase factor in the off-diagonal elements,

H = g e(n)(n) + g e' " )n)(m),
num

where the sites n are distributed regularly in 3D space,
e.g. , on a simple cubic lattice, with periodic boundary
conditions, and 8„=—8 „=8. Only interactions
with the nearest neighbors are considered. The site energy
e„ is described by a stochastic variable. In the present
investigation we use a box distribution with variance
o.z = Wz/12. W represents the disorder and is the critical
parameter. 8 = 0 describes the case with time reversal
symmetry with a Hamiltonian invariant under orthogonal
transformation, while 0 4 0 corresponds to the case with
broken time reversal symmetry which is invariant under
unitary transformation. In spite of the simplicity of the
model, it contains all the relevant properties necessary to
describe the MIT with magnetic field as far as universal
values, like the critical exponents, associated to the critical
behavior are concerned. A similar Hamiltonian has been
proposed by Pandey and Mehta [13] and used to study,
by ELSM, the transition from the Gaussian orthogonal
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ensemble (GOE) to the Gaussian unitary ensemble (GUE)
in a metallic ring pierced by a magnetic fiux [14].

Based on this Hamiltonian, the MIT in absence of
time reversal symmetry will be studied by the ELSM,
i.e., via the Auctuations of the energy spectrum. This
method has already given very interesting results in the
case 8 = 0, where the MIT corresponds to a transition
from the GOE to the Poisson ensemble (PE) [15,16)
which refiects completely uncorrelated energy levels in
the localized regime. In the thermodynamic limit one
obtains two different regimes: GOE for W & W, and
PE for W & W„which are separated by a CE [10,17]
occurring at the critical disorder W, . For 8 4 0 one can
expect a transition between GUE and PE, but the crucial
question is what happens in the vicinity of the critical
point.

Before giving the results we shortly review the ELSM.
Starting from Eq. (1) the energy spectrum was computed
by means of the Lanczos algorithm (which is suited to
diagonalize such very sparse secular matrices) for systems
of size M X M X M with M = 13 and 21, disorder W

ranging from 3 to 80, and phase 8 = O. lm. . The number
of different realizations of the random site energies e„was
chosen so that about 2 x 105 eigenvalues were obtained
for every pair of parameters (M, W) which means between
25 and 90 realizations, for which the full spectrum has
been computed. For the subsequent investigations only
half of the spectrum around the band center is considered
so that the results are not deteriorated by the strongly
localized states near the band edges. After unfolding the
obtained spectrum the fluctuations can be appropriately
characterized [18] by means of the spacing distribution

P(s) and the Dyson-Metha statistics A3. P(s) measures
the level repulsion; it is normalized. So is its first moment
because the spectrum is unfolded. A3 which measures the
spectral rigidity is given by

e'+L

b 3(L) = —min [N(a) —Aa —8] da, (2)
A,B

where ( ), means that we average over different parts of
the spectrum.

Using the random matrix theory (RMT), it is possible
to calculate P(s) and b, 3 for the two limiting cases of the
spectrum, namely the GUE and the PE. For the metallic
side one obtains [18]

65:O

6.5 : * CE

The formula (3) for PoUE(s) is exact only in the case of
2 X 2 matrices but remains a good approximation for the
other cases. For A3 there is no analytical solution, and the
integral (4) has to be calculated numerically.

For the localized case we have

PpE(~) = e '.

L
53(L) = —.

15

In Fig. 1 the results for the Dyson-Metha statistics
are reported. We find, as expected, the GUE and the
PE regimes for small and large disorder, respectively,
as well as the continuous transition between them as a
function of W. In a previous work [17] it was shown
for the case 0 = 0 that the A3 curves are functions of
the system size except at the critical point where they are
size independent. Moreover, the curves were shown to
move with increasing M toward the GOE for 5' & 8',
and toward the PE for 8' ~ 8",. In Fig. 2 we observe
a similar behavior for 8 = O. lm", accordingly this time
the curves move toward the GUE and the PE. The
critical value of the disorder where the curves are size
independent turns out to be W, = 16.5. Correspondingly,
in the thermodynamic limit we expect two different
regimes with the GUE and the PE, separated by the CE
at the MIT. This has now to be compared to the CE
obtained in the case without magnetic field. In Fig. 3
one sees that the CE curves are identical, and thus the

symmetry should be the same, too. Moreover, this was
checked for 8 = n. j2 which is the "most Hermitian"
case, and the same results were obtained (cf. Fig. 3).
Only the critical disorder, which is not a universal value,
seems to be slightly shifted upward toward 8', = 16.65.
Such behavior has already been noted in a different
numerical approach [12], but their shift was significant.
The difference might be due to the fact that our model
does not contain any magnetic field within the system

32, & 4,l
PGUE(s) = s exp ——s

vr )
(3)

&oUE(r) =

2—Ci(2mr) + 2r(1 ——Si(2wr)
~

. (5)
7T )

L

53(L) = — (L —2L r + r )X&UE(r) dr, (4)L4 O

where XoUE(r) is the variance of the number of levels in

a spectral window of width r and is given by
2

ln(2mr) + y + 1 —cos(2m. r)
7T2
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FIG. 1. Dyson-Metha statistics As(L) for M = 21. A con-
tinuous transition from GUE to Poisson statistics occurs as a
function of the disorder W (denoted on the right-hand side).
The dotted line shows the GOE result for comparison.
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FIG. 2. Dyson-Metha statistics 53(L) for system sizes M =
13 and 21 and W = 14, 16.5, and 19.

as in [12] but involves a vector potential due to an
Aharonov-Bohm fiux. This point is still not clear, and

more detailed calculations would be required in order to
check if we really have a shift or not.

The CEe CE curve seems to be proportional to L'~ for
small L and band becomes linear when increasing L. This
would mean that the shape of the curve cannot solely be
described either by the results of Kravtzov et al. [19) or

y the results of Alt'shuler et al. [16]but rather would be
in agreement with Ref. [19]for small L and with Ref. [16]
for lar e L. Mg . Moreover, it has to be stressed again that the
CE curve is completely independent of the magnetic field
in contrast to Ref. [19].

The same results are derived from the t d f Py j
'

e s u y o t,sp in

ig. . or small and large disorder we again find the
GUE and the PE, respectively, while P(s), at the critical

point is the controversy [10,20] about the asymptotic
behavior of P(s). A careful analysis of the shape of P(s
at the critical point gives

P(s) = As exp( —Bs ),

with u = 5/4 ~ 0.05 and A, B the normalization con-
stants which support the results obtained in Ref. [20].
Moreover, one notes that the value of u is in very good
agreement with the formula u = 1 + 1/vd obtained by
Kravtzov et al. [19] relating u to the critical exponent v

and the dimension d of the system. Finally it has to be
stressed that the dependence of the results in [19,20] on

p (p = 1 for the GOE and 2 for the GUE) via some co-
efficients has not been derived from the calculation but

assumed from the very beginning, leaving open the ques-
tion whether those results, at the critical point, de end
on time reversal symmetry or not. Figure 4 demonstrates
that this is not the case.

As the critical behavior is determined by the funda-

mental symmetries of the system, one should consider the

symmetry at the critical point. From the results in Figs. 3
and 4 we conclude that the break of the time reversal

symmetry has no influence on the critical behavior. This
means also that the critical exponent v = 1.34 ~ 0. 0,
which was obtained [9] for the 8 = 0 case, is transfer-

a e to the case without time reversal invarian
Fina

'ance.
inally we compare these results, concerning the criti-

cal exponents, with experiments. Recent measurements

performed on the persistent photoconductor Al 6 A
'21 an

0.3 a0.7 S

[ ] and on uncompensated Si:P [22) suggest, although
t e situation is still not completely clear, that the MIT
is effectively independent of the magnetic field. About
the value of the critical exponent the situation is not
really clearer but it can be mentioned that in Ref. [22,
considering carefully the range of the critical behavior, a
critical exponent of v = 1.3 has been found which would

e in agreement with our results. This seems to indicate,
at least in some cases, that the MIT is, in fact, driven

purely by the disorder. Then it is not necessary to include
interactions to characterize the critical behavior, although
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FIG. 4. Spacing distribution P(s) for M = 21, W = 3 80 d
8 = 0.1m. The hist
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full lines reflec
histograms are the numerical results and th

ect the two expected limiting ensembles, namely
the GUE for the metallic side and the PE f he or t e insulating
si e. e points o, + represent P(s) at the critical point for
M = 21 and M = 13. The symbol o denotes the CE for the
case without magnetic field (8 = 0).
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these can be important outside the critical regime. It has
to be noted that some reserves have been made [23] about
the results obtained in Ref. [22], and it will be interesting
to carefully check this problem in order to clarify the
situation.

In conclusion we have shown, using the statistical
properties of the energy spectrum of the Anderson model
of localization, that the MIT, which is determined by
the symmetry of the system at the critical point, is not
influenced by broken time reversal symmetry. This means
that both cases with or without time reversal invariance
belong to the same universality class, described by the CE,
which opens new perspectives in the comprehension of
the MIT. Although this universality class is defined only
for the critical point, it is sufficient to fix the properties of
the critical behavior. This is in agreement with previous
numerical results [11,12] and recent experiments [21,22].
We point out that these results are valid in 3D systems
and do not apply to 2D where we know that one expects
no MIT with time reversal symmetry while a MIT takes
place when the symmetry is broken [24].

Useful discussions with A. MacKinnon and B. Kramer
are gratefully acknowleged.

Noted added. —While submitting this Letter we learned

[25] that the results in [19] were not completely correct
and that a linear term too in the two-point correlation
function has been found in agreement with the results
presented here for 53(L).
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