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Nonthermal Acceleration from Reconnection Shocks
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Reconnection shocks in a magnetically dominated plasma must be compressive. Nonthermal ion
acceleration can occur across built-in slow shocks and across outflow fast shocks when the outflow is
supermagnetic and the field is line yield. Electron acceleration may be initiated by injection from the
dissipation region. Reconnection and shock acceleration thus cooperate and nonthermal acceleration
should be a characteristic feature.

PACS numbers: 52.30.-q, 52.60.+h, 95.30.Qd

Magnetic reconnection converts magnetic energy into
particle energy as oppositely magnetized flows merge
across a thin dissipation region (DR). An upper limit
to the (2D) reconnection rate comes from the Petschek
model (PK) originally proposed to explain rapid solar flare
energy release [1]. In PK, the DR length is much less
than the field gradient length, and magnetic tension in the
outflow thrusts the plasma from the DR. Slow shocks
are built explicitly into PK, across which the plasma
flow changes abruptly from inflow to outflow. The PK
tension thrust provides faster reconnection than the Sweet-
Parker (SP) type models for which the DR length is
approximately the field gradient length [2].

Though slow shocks are built into PK, similar struc-
tures are seen numerically even when the DR is much
greater than that of PK [3]. In addition, fast shocks can
be present when the outflow is supermagnetosonic and the
outflow boundary field is kept fixed [4]. Although real as-
trophysical plasmas are compressive, most work has em-
ployed the incompressible approximation to facilitate a
global solution. Compressible reconnection models have
also focused on perturbative solutions and the rate [5], not
on the particle spectrum. Here we consider the effect of
compressive shocks near a DR on the spectrum.

Slow shocks, unlike fast shocks, have not been exten-
sively simulated, and their potential for power law accel-
eration has not been addressed as an important outcome
of reconnection. The shocks may accelerate ions directly
from a thermal distribution, and the DR may provide the
injection electrons required for nonthermal electron accel-
eration. Since much of the flow of a reconnecting region
passes through the shocks, reconnection may possibly ex-
plain sustained nonthermal features in magnetically domi-
nated astrophysical phenomena.

We first solve the jump conditions across the built-
in shock for the compression ratio, given a magnetically
dominated inflow. We find the parameter space for which
the outflow must be supermagnetosonic and relate the
compression ratio across the slow shock r, to that across
the fast one rf. We then discuss the implications for
shock acceleration.

The nonrelativistic magnetohydrodynamics jump con-
ditions for mass, momentum, and energy are [6]

P1 V ln P2V2n

plvl„+ Pl + B„/8n = p2v2„+ P2 + Bzt/8n, (2)

pl v 1nvlt B1n Blt 4/tr p2 v2n v2t B2n B2t /4 tr ~ (3)

-p, v, v,„+ I'(I' —1) P, v,„+(B,/4')v, „—v, B,B,„/4vr =

-p2 „+I'(I' —1) P2 2„+ (B /4 ) 2„— B2B2„/4, (4)

where B is the magnetic field, v is the velocity, P is the
pressure, p is the density, and I is the adiabatic index.
The subscript 1 (2) refers to the upstream (downstream)
region, and the subscript n (t) refers to the normal (tan-
gential) components. The electromagnetic jump condi-
tions for an ideal plasma are given by

BlnB2n ~

(v, x Bl) = (v, x B2).
The shock is perpendicular to the (n, y) plane as shown
in Fig. 1. We assume the switch-off condition, B2y = 0,
and also that vl/~vl~ . y && 1 [7]. Define c =—cos8,

s —= sin8, and t —= tan8, where 8 is the angle between
the downstream flow and the shock normal. Define c1 =—

costttl, sl = sin/1, and tl —= tantttl, where tttl is the angle
between the upstream field and the shock normal. The
configuration of Fig. 1 is then described by

vln vl & B]n = Blcl & B1y = B1$1

V2n V2C, V2y V2$, B2g —B2 ~

Vly: 82y: 0

For I =
3 and pl =—al, /viz « 1, where al, and vl~
5 2 2

are the inflow sound and Alfven speed, plugging (7) into
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(1)—(6) gives

t&
= 2(r, —1)(r, —4)/(5r, —2r, ),

p2 = 3[(r, —I)/r, + t, /2],

(8)

(9)

M2„—vq/v2„— (1 + r, t, )/r, , (10)
where M2~ is the outflow Mach number, v2~ is the outflow
Alfven speed, P2 = a2, /v2&, and a2„ is the outflow sound
speed. Figure 2 shows ti and M2& versus r, =—p2/p&.
Since t& ) 0, (8) shows that 2.5 & r, & 4 for a low

Pi switch-off shock [8], with the lower limit being a
perpendicular (J ) shock and the upper limit a parallel (ii)
shock. As Pi ~, r, 1.

When B2 v2/iB2vzi « I, v2 will be supermagne-
tosonic [6] when v2 = v2„+ v, , ) a2, + v2&. Using
(7), (2), (3), and (5), this condition reduces to 6r2-
13r, —20 ~ 0 and is satisfied for r, & 3.2 or tt & 1.25
from (8). A nearly uniform supermagnetosonic outflow
becomes the condition for a fast shock when the field is
line tied at the outflow boundary. The jump conditions,
(1)—(6), across such a quasiperpendicular fast shock for
I =

~ give the equation

M2& = 3rf P2/(4 I f) + 21f(1f 1)/(4 I f). (11)

Combining this with (8), (9), and (10) we obtain

rf = (12r, —30) 4r, —20r, + 7 + (16r, —544r, + 2952r, —4312r, —431 + 2400/r, ) (12)

Figure 2 shows that 1 & rf & 2 when 3.2 ) r, ) 2.5.
The inverse dependence is expected because a decrease
in r, corresponds to an increase in tension force along
the shock plane, and thus a larger M2&, accounting for the
larger rf For. the canonical quasiperpendicular built-in
slow shock with a line-tied outflow, a fast shock is likely,
as the supermagnetosonic outflow condition requires only
that ti & 1.25.

The compression ranges of 2.5 ( r, & 4 for the built-
in slow shock and 1 ( rf ( 2 for the fast shock are
important for shock acceleration theory: For distribution
functions isotropic to first order in v/v„* where v* is
the particle velocity in the proper frame of the bulk
flow v, the steady state Boltzmann equations can be
written as a diffusion-convection (DC) equation. We
define N(x, p~)dp„—= 4n p2f(x, p~)dp~, where f is the
Boltzmann distribution function, x measures position, and

p~ is the particle momentum. The DC equation across a
general shock is then [9]

8„[v„N —~„B„N]—3(B„v„)Bp,[ppN] = 0, (13)

[9] shows that the outflow energy spectrum for a steeper
inflow spectrum takes the power law form N ~ p ", with

energy index w = (r + 2)/(r —1) depending only on the
compression ratio r. Fermi acceleration operates as the
particles diffuse between scattering centers (presumably
turbulence) on each side of the shock. Particles always
see the centers converging, as the normal velocity is larger
upstream.

Shock acceleration can dominate synchrotron loss when

r,~, the shortest synchrotron loss time scale of the region,
exceeds the longest shock acceleration time scale 7 h

..

rsyn 6 trmec/ YeBi trr + ash Knit/vi, (14)2 2

where crT is the Thomson cross section, y, is the electron
Lorentz factor, and a„ii is the diffusion coefficient normal
to the slow shock and thus parallel to the downstream
field. For particles moving at c, x„ii —chic/3, where Aii

is the field gradient length [9] which we assume is of the
same order in the inflow and outflow regions. From (14),
the condition justifying the absence of a synchrotron loss
term in (13) is then

where v„ is the normal flow velocity, ~„ is the normal
diffusion coefficient, and we have assumed that gradients
in the normal direction are much greater than those along
the shock. The solution of (13) across the shock when
the shock thickness is much less than the mean free path

y, ( 0.08(vi/cm s ') (Bi/G) (Aii/cm)

10-

8.

(15)
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FIG. 1. Jump conditions across a reconnection slow shock
extending from the diffusion region. The dotted line at the
outAow edge represents a possible fast shock if the field is line
tied there and if v2 is supermagnetosonic.

FIG. 2. The dimensionless quantities M~ (short dashed), ti

(long dashed), and rf, (solid) plotted for 2.52 & r, & 4 as
obtained from the Pi « 1 shock equations (8), (10), and (12)
of the text, respectively.
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The third term in (13) can be thought of as the
first order correction to the rest frame equation, when
measured in the lab frame. This motivates the finding

[10] that (13) includes not only guiding center diffusion
through pitch angle scattering, but also drift acceleration
from motion along the induced electric field. The per
particle energy change from the latter increases with
obliquity. For slow (fast) shocks, the curvature (gradient)
drift is parallel to the electric field and accounts for energy
gains, while the gradient (curvature) drift is antiparallel
to the electric field and incurs particle energy losses
[11]. These contributions conspire with those from the
gyromotion component along the electric field for a net
per particle momentum change dp„/dt = —p~V v&,
where v& is the flow velocity perpendicular to B. The
relevant component of this force is included in the
coefficient of the BN/8 p~ term of (13).

The relative importance of a reconnection fast shock
varies inversely with the size of the DR: When both
shocks are present, 3.2 & r, & 2.5, with 2.4 & w, & 3, so
that 1 ( rf & 2 with wf ~ 4, where w, ~f~ the slow (fast)
shock energy index. (The range 3.2 ~ r, ( 4 corresponds
to a slow shock with no outflow fast shock and 2.4 ~
w, & 2.) Thus, if slow shock acceleration is effective, fast
shocks cannot further steepen the already steep spectrum
of particles that passed through the slow shock. However,
if the DR length -A~~, then more of the flow will see only
the fast shock, and the spectrum from shock acceleration
should have a somewhat lower energy index.

Although we have used a DC equation, we recognize
that shock acceleration is a rather nonlinear process.
However, fast shock simulations show that the Fermi
acceleration engine is very efficient, transferring ~ —,0 of
the inflow energy to particles [9]. These particles tend to
smooth out the shock by diffusion, produce turbulence,
and increase the compression ratio above the jump
condition value, as their escape and acceleration change
the downstream equation of state. The shock smoothing
can violate the assumptions built into the simple DC
scheme, but the increase in the compression ratio over the
linear limit enhances the nonthermal acceleration. The
efficiency is relatively insensitive to the obliquity of the
inflow field unless the Mach number exceeds -30. For
our case, outflow fast shocks would then be effective if
M2~ —r, t~ & 30 from (10).

A recent hybrid simulation [12] of oblique slow shocks
and the ion-ion cyclotron instability shows that steady or
cyclically reforming slow shocks can develop depending
on the inflow conditions. In the steady case a coherent
Alfven wave train forms downstream. In the unsteady
case, the shock quasiperiodically transforms from a thin
sharp transition to a wide diffuse transition, and Alfven
turbulence is seen downstream. This cyclic reformation
is strikingly similar to that seen in quasiparallel fast
shocks [9] and is an example of an electromagnetic beam
instability brought on by the interaction of backstreaming

ions with the inflowing plasma. Waves produced in
the upstream by such instabilities are amplified as they
convect back to the shock front. The compressed waves
then interact strongly with the inflow particles, scattering
and slowing them, producing the entropy required for the
shock. Some of the ions are scattered back upstream by
the waves, and a subset of those are scattered back to the
shock. The reformation of the thin structure occurs if the
back streaming particles leave the simulation region and
then no longer produce waves that are convected to the
shock. The above process is in fact how nonthermal ions
are extracted from an initially thermal input, initiating
the Fermi process. It is the effectiveness of the Fermi
acceleration which makes shock acceleration such a
nonlinear process.

Slow shocks in the geomagnetic tail show wave sub-
structures with properties similar to those of Ref. [12] and
also show turbulence ahead and behind the shock fronts
[13]. In addition, although much of the shock acceler-
ation goes into ions, significant nonthermal tails in the
electron spectra are seen [14] and are not modeled by hy-
brid simulations which assume a fluid electron population.
Fast shock simulations show electron acceleration with
injection electrons [15], and we expect that slow shocks
could operate similarly. More simulations of slow shocks
are needed which predict the spectrum of accelerated
particles.

Jet plasma in Abrikosov-Gor'kov theory may be largely
pair plasma [16],so ion-electron simulations might not be
applicable. We suggest that reconnection and its shocks
are a strong candidate for solving the reacceleration
problem in jets, which requires sustaining nonthermal
electron emission over distances exceeding cr,~, where c
is the speed of light. Shock electron acceleration requires
injection particles [16], which we now show and argue
that the DR may be able to provide such injection.

We can estimate the range of particle energies ac-
celerated by the Fermi process for the slow and fast
shocks and, in particular, the range of y, . First, con-
sider the slow shock: An upper limit can be found by
ensuring that the particles see an ordered field. This
requires A~~ & g2, where g2 —c y, m, /eB2 is the parti-
cle gyroradius associated with the smaller field of the
two flow regions. This implies y, & eB2A~~/m, c
10 3(Bq/G)(A~~/cm). A lower limit can be found by de-
manding that the downstream particles be able to diffuse
upstream. This requires particles of large enough en-
ergy to resonantly interact with the plasma waves which
pitch-angle scatter the particles upstream. For Alfven
turbulence [16], the electron lower bound is a factor
-m~/m, times that for protons and is given by y, &
(m~/m, )v~/c, where m~ is the proton mass and e is the
charge. Thus for the slow shock

(m~/m, ) v~/c & y, & 10 '(B2/G)(A~~/cm). (16)
Consider now the fast shock: Since the flow down-

stream from the fast shock is primarily perpendicular to
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the shock normal, diffusion across the shock requires [9]

K g/v3 ) g3 y m, c /eB3, (17)

where v3 is the downstream Aow speed, B3 is the
downstream field, g3 is the associated gyroradius, and ~„t

is the diffusion coefficient normal to the shock but —i83.
For A~~ ) g3 we use tr„~[ —cA[i/3, so [9] K„i = cg3/3A([,
and (17) gives y, ) 3eB3v3A~~/m, c . This limit must be
combined with the analogous limits as described for the

!

slow shock so that for the fast shock we have

Max[(m„/m, ) v3~/c, 10 (B3/G)(A~~/cm)v3/c] ( y, ( 10 (B2/G)(A~~/cm), (18)

where v3A is the Alfven speed downstream from the
fast shock. Note that the upper limits in (16) and

(18) are less than the upper limit in (15) when v& )
(0.01 cms 2G s)B~B2A~~.

The highly dissipative energy conversion in the DR
could provide the injection electrons. To see this, note
that upon absorbing the annihilated field energy, the
average y, there -(vtA/c~)m~/2m, . Combining this with

(17), we see that slow shocks of large obliquity favor a
DR which can inject, as the condition is

vlA/v2A r,'"/ct ) c/vlA (19)
We have discussed nonthermal acceleration by low

P~ reconnection slow shocks and outflow fast shocks.
The particle spectra across the slow shocks should be
at least as flat as that given by the DC spectral index
range of 2 ~ w, ( 3 for sufficiently large slow shocks.
The dissipation region can provide injection electrons for
acceleration, and the above index range is consistent with
observed features of radio galaxy lobes and jets [16].
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