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Low-Energy States of Circulating Stored Ion Beams: Crystalline Beams
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The low-energy states of a beam of charged particles subject to circumferentially varying guiding and
focusing forces is studied by first deriving a Hamiltonian and then using molecular dynamics methods.
In an alternating gradient structure, operating below the transition energy (but not in a constant gradient
ring), the lowest state is ordered. The nature of the ground state depends upon the beam density and
the ring parameters. For very low temperature, the crystal remains intact for a long time, but as the
temperature increases it rapidly gains energy from the lattice.

PACS numbers: 41.75.—i, 29.20.Dh, 52.60.+h, 52.65.+z

The ground state of crystalline beams was first studied
in seminal work by Schiffer and Rahman [1]. Their
work assumed a storage ring model in which charged
particles are subject to time-independent harmonic forces
in both transverse directions. Subsequently, they studied
crystallization in a time-dependent focusing potential
which replicated some of the features of alternating
gradient focusing and with time-dependent shearing which
replicated some of the features of the alternate bending
and straight sections of a storage ring [2].

Nevertheless, questions remain about whether or not an
ordered state can be created in a real storage ring. Fur-
thermore, with laser cooling very low (longitudinal) tem-
peratures of stored beams have recently been achieved [3].
Thus it is now prudent to develop the tools which will al-
low one to make calculations that incorporate the charac-
teristics of actual storage rings. We have developed such
a formalism, and in this Letter we describe the formal-
ism and then employ it to study the nature of the ordered
state in actual storage rings. We find that in operation
below the transition energy y & v, alternating gradient
(AG) rings, as contrasted with constant gradient rings, can
have a crystalline lowest energy —or ground state. This
state will change periodically in time, "breathing" as the
particles go around the storage ring and are subject to pe-
riodic bending, straight sections, focusing lenses, and de-
focusing lenses. Under some conditions the changes are
dramatic, the crystal periodically changing its shape and
orientation, but the crystal remains for a very long time
in the ground state; i.e., by this process very little heat is
put into the crystal (possibly zero at zero temperature). In
order to achieve the ordered state, the beam must be very
cold; we give results, in typical machine parameters, for
just how cold (expressed in terms of energy spread and
emittance) the beam must be. We show that there exists
a temperature above which the crystal rapidly melts.

In order to use the molecular dynamics (MD) methods
we must be in the frame of reference of the particles. That
is, a rotating frame (x, y, z, r) of a reference particle in
which the orientation of the axes is rotating so that the
axes are constantly aligned to the radial (x), vertical (y),
and tangential (z) direction of motion. This is, of course,
an accelerating frame of reference. We can derive the
equations in the laboratory frame and then transform to
the moving frame, but it is most convenient to derive
the equations directly in the beam frame, employing
the formalism of general relativity [4]. One may think
of the result of this process as finding the relativistic
generalization of centrifugal and Coriolis forces. In the
frame of the reference particle, the particle motion is
nonrelativistic. The rather lengthy derivation resulting in
a novel Hamiltonian, is given in Ref. [5]; here we only
present the results.

It is convenient to scale dimensions in terms of g, with
gs = rop2/p2y2, where ro is the classical particle radius
(Z2e2/mc2), Ze is the electric charge, the velocity of a
reference particle is Pc, its energy is ymc2, and it moves
on an orbit with bending radius p in magnetic field Bo.
We measure time in units of p/Pyc and energy in units
of P2y2Z2e2/g. In a bend region, with magnetic field Bo,
we have the Hamiltonian

H= (P +P +P) —yx-P~+ -x1 1

+ V, (x, y, z), (1)
where the Coulomb potential

Vc = g[(x, —x)'+ (y; —y)'+ (z, —z)'], (2)
J

and the summation j is over all the other particles.
In a straight section, where there is no bending of

particles, there often are focusing magnets. If focusing
is supplied by a quadrupole of field gradient Bl so that
B = B)y and By = Blx then in a straight region, where
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the focusing strength is characterized by n = B—i p/Bo,
we have the Hamiltonian

H = 2(P, + P, + P ) + 2( —nx + ny )

+ V, (xy, z). (3)
As the particle goes around the storage ring, the appro-

priate equations of motion must be employed. The change
from those corresponding to a curved section to those cor-
responding to a straight section incorporates, in a quanti-
tatively correct manner, the effect of shear (given by the
term yxP, ). Similarly the AG effect of alternate gradient
is incorporated, quantitatively correctly, by changing the
field gradient n (positive for vertical focusing, negative for
vertical defocusing, and zero for an open straight section).

Consider a cyclotron magnet, i.e., a magnet that gives
constant bending and constant focusing. The Hamiltonian
in this case is

H = 2(P, + P, + P, ) —yxP. + 2(1 —n)x2

+ 2ny + V, (x, y, z). (4)
If the gradient of the magnet is such that n lies between 0
and 1 then, as is well-known, the magnet in combination
with the centrifugal force gives focusing in both the
vertical and horizontal planes. Just the kind of storage
rings, one would think, for the formation of a crystal and,

yet, that is not true at all. The Hamiltonian in Eq. (4)
is bounded from below only if 0 ( n ( 1 —y2. Since

y ) 1, we see that this condition can never be satisfied
and, as a result, crystalline beams can never exist in this
case. In fact, the centrifugal force becomes defocusing
when the particles are crystallized.

Let us now, for pedagogical purposes, separate the
effect of "shear" from that of time-dependent focusing.
We shall study, as we did in our earlier work [5], an

AG ring with a constant bending field. The Hamiltonian
is the same as in Eq. (4) but with n time dependent.
Assuming there is horizontal and vertical focusing, i.e.,
v„) 0 and vy & 0 where v, and vy are the horizontal
and vertical tunes, it is easy to see that the Hamiltonian,
in smooth approximation, is bounded from below if and

only if y & v„and, therefore, crystalline beams exist
only if the ring is operated below the transition energy.
Our analysis is made for a particular ring, but the criterion
that y ( v„ is general.

For a given ring, the nature of the ground state (which
term is used to describe the periodic lowest energy state)
depends upon the density of particles. When the density
is low the ground state is a 1D chain. If the density
is larger than the ground state is, a 2D state lies in the
plane of weaker focusing, which is determined by whether
v —y is greater or smaller than v . Notice that the
focusing in a crystal is not determined simply by v, and

v~ but by the focusing factors (v2 —y2)'~~ and v~.
The density at which a 1D structure changes into a 2D

structure can be determined analytically. It is given by
Min(v, v —y ) ) 4.2/5, , (5)

where b, , is the nearest neighbor distance in z (given trivi-

ally in terms of the number of particles stored, the circum-
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ference of the storage ring, and y). This relation is sim-
ilar to that in Ref. [2], but involves the focusing fac-
tors. Notice that, in practice, one can change the focusing
of a storage ring (changing the operating point) and also
change the storage energy. Thus the focusing can be read-

ily changed and the effect of such change easily studied.
In an AG ring, the 2D crystal structure, as contrasted

with the 1D structure, will "breath" as the particles go
about the storage ring. Despite this motion little energy
is pumped into the crystal; it remains in its ground state
for a very long time. Such behavior is not unexpected, for
as particles go around the AG storage rings, the amplitude
of their oscillation changes (P-function variation), and par-
ticles of different energy move closer or further apart (71-
function variation), yet particles can be stored forever [6].

In general, when Coulomb interactions and AG focus-
ing are present it is impossible to solve the equations an-

alytically; we obtain numerical solutions using MD. This
method allows us to determine the lowest energy state in

realistic storage rings (that is, the actual ring lattice can be
inserted in the computation) and also allows us to study
behavior as the crystal temperature is increased from ab-
solute zero. We can also determine the temperature at
which such a crystal melts, i.e., loses its long-range order
as the particles go into a state in which they pass each
other (as in a usual storage ring).

In the MD calculations we choose time and space
steps, the number of particles in a cell, and the length of
cells so that the results are independent of these choices.
In finding the ground state we "cool" once per lattice
period by simply imposing a condition of periodicity

(by averaging initial and final coordinates and momenta),
while correcting P, according to the amount of slippage
in z for each particle and for many periods (typically
1000) and then turning the cooling off and observing no
change (in one case for up to 10 periods). The results are
independent of initial conditions. We have checked that
"cooling, " which better replicates the actual experiments,
leads to the same state (but takes very iong when the

density is high).
We find, numerically, that when the density is higher

than that appropriate to a 2D crystal, the particles arrange
themselves into 3D crystals. For even higher density, the

crystals become helices and then helices within helices.
An example is shown in Fig. 1. These structures are
similar to, but differ in detail, from that given in Ref. [1].
It is seen that the interparticle spacing in all these structures
is approximately the same and given (roughly) by the

interparticle spacing when transition is made from 1D
crystal to a 2D crystal, i.e., can be characterized by $,
v2 and vy except for dimensionless numbers near unit.
Thus, the crystal forms cylindrical shells within cylindrical
shells, upon which the particles are deployed in such a
way that the interparticle spacing is about the same. This
behavior is very similar to that which occurs in ordinary
crystals. It appears to be the case that a crystal (with many
shells) forms no matter how high the particle density is.
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FIG. l. A 3D structure with particle positions projected
(a) into the x-y plane and (b) into the P-z plane, where P is
the polar angle. The lattice is a FODO lattice with constant
bending with v„= 2.7 and vy = 2.3, and the particle energy
is y = 1.4. The total number of particles is 60, and the MD
period length is 10$. The particles move periodically in time,
with the solid lines showing their trajectories and the circles
indicating their position at the start and end of the each lattice
period.

Having determined that ground states can be formed
in a storage ring with AG (time-dependent) focusing, we
now study the effect of shear upon the ground state, that
is, the effect of time varying bending. To do this in a
specific case, we took an AG lattice having 10 periods
of the FODO type (focusing, open or drift, defocusing,
open or drift) where with constant bending a ground state
crystal can exist. The bending was then concentrated
into a small region of the period. The result of this is
shown in Fig. 2. It can be seen that the crystal "takes
up the difference" between constant angular velocity and
constant linear velocity by adjusting the spacing between
particles, i.e., by converting potential energy into kinetic
energy. This result is generally true in all cases we have
studied, i.e., shear does not seem to destroy a crystal, but
may affect its melting temperature.

Having studied the ground state, we now investigate
behavior at nonzero temperatures [7]. Temperature is
defined in terms of the deviation of P Py and Pz from
that of the ground state, then squared and averaged over
a period and over all particles. The temperature can
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FIG. 2. The effect of shear. In this study N = 40, L =
40$. The cell of one of the particles with largest horizontal
displacement (and no vertical displacement) is shown. Motion
occurs both (a) in the x direction (breathing) and (b) in the z
direction (shear). Lattice components in one of the 10 periods
are displayed on the figure: B is a bend section; F is a focusing
section; and D is a deforming section.

readily be expressed in terms of the usual accelerator
parameters of un-normalized emittance, a and relative
momentum spread b, p/p by b, a„= gzp„T„/pz, he~ =
gz/3~T~/p2, and Ap/p = gyT,'~2/p. The Hamiltonian
for particles in a storage ring is quite different from
the conventional Hamiltonians encountered in condensed
matter physics. It is time dependent, and, therefore,
energy is not conserved. Furthermore, the Hamiltonian
without the smooth approximation is not bounded from
below at any time, and the adiabatic approximation cannot
be used. It is precisely the dynamical coupling between
the external focusing-defocusing force and the Coulomb
interaction among the particles that gives us the well-
defined periodic structures which we call the "ground
state. " However, the time dependence of the Hamiltonian
can cause damage to the crystal, because energy can be
pumped into the system by creating phonons. As a result,
a crystalline beam, especially at nonzero temperatures,
cannot last forever unless energy is pumped out of the
system by means of a refrigerator.
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The frequency of the machine lattice must be several
times higher than the highest phonon frequency in the

system, so that the transfer of energy into the system can
only be realized by multiphonon emission. This process
is expected to be strongly temperature dependent. We
have studied the relation between the heating rate and the

temperature. Figure 3 shows the survival time of a 3D
crystalline beam, subject to shear and without cooling, as
a function of the initial temperature at which a MD run

starts. The survival time indeed strongly depends on the
initial temperature and rapidly tends to a large value when

the initial temperature is low enough. This indicates that

at low temperature the rate that energy transfers into the

system is very low, and it is easy to maintain a crystalline
beam for a long time.

Finally, it is well known from the work of Landau
and Lifshitz [8] and the work of Emery and Axe [9]
that no sharp phase transition exists in one-dimensional
systems. The systems we study are all one dimensional
in the sense that in the two directions perpendicular to

the beam, the systems are always finite, and therefore, we
might not expect sharp phase transitions between these
phases. However, two qualitatively different states exist
in these systems, one is a low temperature "condensed
state" (crystalline beam) in which there is limited shearing
motion in the z direction, but no passing of particles, and
the other is a high temperature "running state" in which
particles shear relative to each other. Our numerical
studies, to the accuracy of the computer, suggest that the

transition between these two states is sharp.
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Grant No. DMR-91-15342.
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FIG. 3. A study of survival time (time before particles slip
past each other) of a crystal in the absence of cooling, as a
function of the initial temperature of the crystal. For these
studies the same lattice was employed as in Fig. 2. The
parameters were p = 1m, y = 1.4, v, = 2.8, and v, = 2.1. In
all cases N = 40 and L = 40$. More than one point, at the
same temperature, is due to different random seeds used to
distribute initial particle position and velocity appropriate to the
chosen temperature.
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