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Polarization Observables for the p-d Breakup Reaction and the Nuclear Three-Body Force
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It is shown that nuclear three-body potentials involve spin operators of a type not allowed for
ordinary two-body NN interactions. The effect of these operators on the wave function for proton-
induced deuteron breakup is discussed, and a class of polarization observables is identified that may
have enhanced sensitivity to the three-body forces.
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The nature of the nuclear three-body force and the
role of three-body forces in bound states and scattering
problems are subjects of central importance in nuclear
physics. It is well understood that three-body forces
must be present at some level in nuclear systems. For
many simple systems encountered in nature (for example,
collections of point charges), the interaction between any
pair of particles is unaffected by the presence of a third

particle, and therefore the potential energy of a three-
body system is just the sum of the pairwise two-body
potentials. The situation is more complex for particles
that have internal structure. In this case particles can
"polarize" each other (alter the internal structure by
mixing with excited states), and in this way the presence
of a third particle can affect the force between 1 and 2.
Since nucleons have internal structure, one should expect
that nuclear three-body systems will be governed by a
potential that contains three-body terms in addition to the
usual pairwise NN potentials.

Most of what we currently know about the three-
nucleon (3N) force comes from theoretical models.
Several groups (see, for example, Refs. [1,2]) have
constructed three-body force models involving two-pion
exchange and 6 excitation which lead to explicit expres-
sions for the 3N force. On the experimental side there is
some evidence to support the existence of a three-body
force of this general nature. It is now well established
(see, for example, Ref. [3]) that most "realistic" NN

potentials are not sufficiently strong to reproduce the
observed H and He binding energies. The predicted
binding energies are generally about 7.5 MeV for 3H,
well short of the observed 8.48 MeV. If one includes the
2m-3N potential, the calculated binding energy increases
by roughly 1.5 MeV (see Ref. [4]). Although the final

result is still not quite correct, it is noteworthy that the
model potentials produce energy shifts of the correct sign
and roughly the right order of magnitude.

The effect of 3N forces has been studied for a variety
of observable quantities, the H binding energy being the
prime example. Without attempting to review the field
as a whole, one can say that there is a nontrivial amount
of circumstantial evidence to support the existence of 3N
forces. However, we have little or no hard experimental
information concerning the nature of the interaction.

Q=g( —) A, R, (3)

FIG. 1. Jacobi coordinates for the three-body system.

lt is clear that progress in understanding the 3% force
depends critically on our ability to identify observables
that are sensitive to various aspects of the potential. With
this in mind, our goal in this Letter is to describe a
class of observables which we believe may be particularly
sensitive to 3N forces.

We begin by asking what features 3N potentials may
have that distinguish them from ordinary pairwise NN po-
tentials. A seemingly trivial point is that description of
a three-body system requires the use of two independent
internal coordinates. If we adopt the Jacobi coordinates
of Fig. 1, we see that while the pairwise two-body poten-
tials depend only on a single coordinate, (x, y + 2x, or

y
—zx), the 3N potential may contain terms that depend

simultaneously on both x and y.
For example, one finds (see Ref. [4]) that the 2m 3N-

potential contains terms of the form

Q = (tr2 x)(~3 y) —(tr2 y)(tr3 x). (1)
It is easy to show using ordinary vector algebra that this
operator can be rewritten in the form

Q = (tr2 3) ' (x X y). (2)

The unique feature of this operator is that it involves
the coupling of a spin operator with an axial vector
constructed from spatial coordinates. The axial-vector
nature gives this operator a distinctive behavior under
combined rotations and rejections of the spatial coordi-
nates. It is this special feature of the 3N potential that we
shall exploit.

To generalize the discussion, it is useful to rewrite

Eq. (2) in terms of spherical tensors. Since the operator
is a dot product of spin and space vectors, we can write
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where A is a rank-1 spherical tensor spin operator and R is
a rank-1 space operator. One can then easily demonstrate
that R is just proportional to the B» &

"bipolar harmonic, "

Bi I L(x, y) = g (l„k„,lY AY iLm) Yi '(x) YI
'
(y). (4)

A, kv

We shall refer to the operator of Eq. (1) as a rank-1 inter-
action, since it can be written as a contraction of rank-1
spin and space operators.

In addition to the operator Q discussed above, the 2m. —

3N potential involves a number of other complex space
and spin operators which, when expressed in terms of
spherical tensors, are seen to be (at least partially) of
rank 1. The common feature of the rank-1 interactions
is that they transform as vectors under rotations of the
space coordinates. On the other hand, the 3N interactions
conserve parity, and, since the spin operators do not
change sign under parity inversion, the space tensors must
also be even under the parity operation. In other words,
the spatial operators are all axial vector in nature, by
which we mean that they can be expressed in terms of
bipolar harmonics with L = 1 and with I„+ ly even.

It should be clear that operators of this class are not
permitted for two-body potentials, for the simple reason
that one cannot construct a spatial axial vector from a
single coordinate.

Let us now discuss the effect that potentials of this kind
can have on the wave function of a three-nucleon system.
For this discussion we adopt the L Scoupling -scheme [5]
in which the basis states are of the form

l~) = l[(l„l,)L.; (s|,S„)S]J). (5)
Here l„and ly are the angular momenta associated with
the coordinates x and y, respectively, L is the vector sum
of l„and ly S is the vector sum of s2 and s3, S is the
total spin angular momentum (si + S„),and J is the sum
of L and S. For simplicity we have dropped the isospin
quantum numbers. In our discussions we consider only
systems of isospin T3 = ~2, with particles 2 and 3 the
identical nucleons.

The simplest example to consider is the triton bound
state. In this case the wave function consists of a domi-
nant S state (Ps = 89%) together with a small S'-state
admixture (Ps —— 1.4%), various D-state components
(Po ——9%), and weak P states (Pp = 0.1%). In terms
of the L-S coupling notation, the S state includes compo-
nents with (l„lY)L = (I, l)0 and S„=0, while the S' state
corresponds to L = 0 and S„=1. The P states (D states)
are characterized by L = 1 (L = 2), while the require-
ment of positive parity means that all states must have
Iz + ly even.

In view of the similarity between the angular momen-
tum coupling of Eq. (4) and the coupling implied by
Eq. (5), it should be clear that one effect of the axial-
vector interactions is to couple the dominant states of the
system [for example, the (0,0)0 S state] directly to the P
states [for example, (1,1)1]. Therefore, one should expect

the 3N potentials to have a relatively large effect on the
P states, a result which is supported by detailed Faddeev
calculations [6].

Let us now turn to the continuum states and specifically
to the process of proton-induced deuteron breakup. Here
again we use the basis states of Eq. (5), and in this
case it is useful to distinguish states of "natural parity,

"
which have I, + ly + L even, from states of "unnatural
parity,

" I„+ Iy + L odd. For p-d breakup the initial
state of the system is composed primarily of natural
parity components [7]. Now the NN tensor force can,
in principle, couple these natural parity states to breakup
states that have unnatural parity. This happens in the
triton as well, where the tensor force gives rise to a
small P-state admixture even in the absence of 3N
forces. In general, however, one expects that the ordinary
NN potentials (and this is strictly true for the central
and spin-orbit terms) will couple primarily to breakup
configurations with natural parity. In contrast, the "axial-
vector" components of the 3N potential should couple
most strongly to states of unnatural parity.

In view of this result, it seems possible that one could
enhance the sensitivity of p-d breakup measurements
to three-body forces by identifying observables that are
especially sensitive to unnatural parity states. As we shall
see below, there is a class of polarization observables that
may well have this property.

The classification of polarization observables for
breakup reactions is somewhat complex. It is well
known that for reactions with two-body final states, parity
conservation imposes certain restrictions. For example,
for reactions initiated with polarized spin-2 particles, only
the component of the polarization normal to the scattering
plane affects the scattering cross section. The general
theorem is expressed most easily in terms of observables
defined using spherical tensor spin operators [8]. Adopt-
ing the conventional coordinate frame in which i is along
the incident beam direction (k;) and y is along k; X kf,
one finds that if parity is conserved the reaction analyzing
powers satisfy

Tk, = (—)'Tkq

If we now note that A, (the longitudinal analyzing power)
is proportional to Tro, that A„ is proportional to Re(T»),
and that A~ is proportional to Im(T»), we see that only AY

can be nonzero.
The generalization of the parity theorem to the case

of three-body final states is discussed in Ref. [9]. For
two-body final states the parity theorem results from a
symmetry property of the helicity amplitudes that can
be established by considering the effect of an operator
Pe' JY consisting of a rotation of 180 about the y axis
followed by a parity inversion. This operation returns all
momentum vectors to their original values but reverses the
helicities. Assuming that the S matrix is invariant under
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AY(k''k k, ) = Ay(k''k k ) (10)

The remaining observables (namely the ones that are re-
quired to be zero for two-body final states) are antisym-

reflections and rotations one obtains the relationship

f,(k;;kl) = (—)' "gf,(k;;kf),
where v represents the helicity and g is the product of the
intrinsic parities. [If more than one particle has nonzero
spin, there are multiple subscripts and (—)' " factors. ]
The parity theorem follows directly from this result.

For the case of a three-body final state, description
of the final-state kinematics requires the use of two
relative momenta; for example, the momenta k, and

ky conjugate to the coordinates of Fig. 1 ~ Since the
scattering problem now involves three momentum vectors
(k;, k„,kY), one can have reaction kinematics for which
there is no "reaction plane" that contains all the momenta.
Consequently, there is no choice of axes for which the
operator Pe' - returns all momenta to their original
values, and so one obtains a relationship of the form [9]

f (k'' k kY) = ( ) 71f— (k'' k k ) (8)

where k,' and ky are the reflections of k„and ky in the
x-z plane. The parity theorem for three-body final states
then becomes

Tl,q(k kkY) ='( ) T„(k''k k ) (9)

The new feature here is that, for noncoplanar reactions,
none of the polarization observables are required to be
zero. Instead, we may divide the observables into two
classes. "Ordinary" observables, of which A, , is the
simplest example, have the property of being symmetric
under reflections of the final-state momentum vectors in
the x-z plane:

metric under reflections in the x--. plane. Thus, for ex-
ample, for the longitudinal analyzing power we now have

A (k;; k, , k, , ) = —A (k;; k'„k', . ).

We shall refer to these quantities as "axial" observables,
since they have opposite rotation or reflection behavior
compared to the ordinary observables.

At this point one is led to speculate that there could
be a connection between these new axial polarization
observables and the axial-vector operators which are
present in the nuclear three-body potential. Recall that in
our discussion of the 3N force we saw that the existence
of two independent coordinates makes it possible to
construct a new class of operators that have a distinctive
(axial-vector) behavior under combined rotations and
reflections of the spatial coordinates. Similarly, in a
three-body final state we now see that the presence of
two independent momentum vectors makes possible the
existence of a new class of polarization observables that
again have unusual behavior under combined rotations
and reflections.

To explore this connection in detail we need to con-
struct an explicit expression for the three-body scattering
amplitude. To do this we focus on the three-body wave
function W which we imagine to be expanded in terms
of the states ~u) of Eq. (5). To find the scattering ampli-
tude for a particular k, and k„we need to look at the
outgoing-wave part of 3II' in the asymptotic region (x and

y both large). Furthermore, what is relevant is the value
of 3p at coordinate points x (( k„and y ~) k, . What this
means is that the presence of a term ~a) in the wave func-
tion will give rise to a term in the scattering amplitude of
essentially the same form but with x replaced by k„and
with y replaced by ky Explicitly, the scattering ampli-
tude will be of the form [10]

F," "'"3(k kkY)'
ulJA, A, Ap, ,o

1

(2l + 1)2(l0, sp [1p)U, .((l„k„l, , A,, [LA)(s2p2, s3p3(Sg pg)

X (s~ p, ~, S„p,„[So)(LA,So (Jp)Y~ '(k, )Y~ (k,, ). (12)

In this expression I, s, and J specify the initial angular
momentum state of the system, and U, &

is a "collision
matrix" that describes the coupling of initial state I, s, J to
final state n. The amplitude F is labeled by the channel
spin s (s = s~ + sd) and its z component p, , and for the
final state by the spin projections, p, &, p, 2, and p, 3, of the
three nucleons.

We may now ask how the presence of various final
states n affects the individual polarization observables.
We particularly want to focus on the axial polarization
observables and on the role of states with unnatural parity,
since we believe these states may be strongly influenced

by 3% forces. Since the observables are quadratic in the
amplitudes, each term in the expression for any given
observable will involve two interfering states n and a'.

The result we find is that the axial observables can be
nonzero even in situations where no unnatural parity states
are present. However, the angular momentum coupling
is such that terms in which the two interfering states
have opposite symmetry (one natural parity and the other
unnatural parity) should play a major role. This suggests
that three-body forces may well have a sizable effect
on the axial polarization observables, arising through the
interference between relatively large natural parity states
and the smaller unnatural pity states.

To illustrate, we present the explicit results for the spin-

2 analyzing powers. Working from Eq. (12), we obtain

oTgq = g C~ L FBI I r(k, ky), (13)
pp ~. , ~, x
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where B is defined in Eq. (4) and where we have used the symbol P to represent collectively the quantum numbers I, s,
J, and ct. The expansion coefficients C in Eq. (13) are given by

~L,L, r ~ g ~s.s'&s„,s!UsiU, n~'s~v(10 I'0II0&(i o, I,'0IL 0)(i,0, I,'0ILY0)(~ —q, kqlI0&
I

l s J l lY L
X W(LJL'J', SX)W(s2s'2, 1k). I' s' J' . - i,' I' L'

I k L L LY L
(14)

There are many restrictions on the various quantum
numbers that appear in Eq. (14). From the Clebsch-
Gordan coefficients we find that the combinations l + l' +
I, l„+ l„' + L» and lY + l' + LY must all be even. In
addition, parity conservation requires that U is zero unless
the initial and final states have equal parity, leading to the
requirement that l + l„+ lY and l' + l„' + l' must be even.

If we now turn to the special case of the longitudinal
analyzing power (k = 1, q = 0), we have in addition that

+ k + I must be even. Combining these results we
conclude that for A, the coefficients C are zero unless
L„+ L» + E is odd.

We may now use this result to understand which states
n and u' may contribute to the coefficient of a given
angular function BL,L r in Eq. (13). The relevant angular
momentum coupling is shown in Eq. (14). By making
use of the fact that in the 9-j symbols each row and

column must satisfy the usual triangle relation, we see
that for a particular value of L a pair of states a and a'
(which are characterized, respectively, by orbital quantum
numbers I„,IY,L and I„',I',L') may contribute only if L
and L' satisfy a triangle relation with X. Thus, for a
given angular function BL,L, q, the two interfering states
must have L + L' of at least X. However, we also
know that l„+ l„' + L and lY + l' + L~ are both even
and that L„+ LY + 5 is odd. From this it follows that
for the lowest possible choice of the combined angular
momentum of the two states (i.e., for L + L' = 5 ), one
of the two states must have natural parity and the other
unnatural parity. (The general result is that whenever
L + L' + L is even the two states must have opposite
symmetry. )

For example, an angular function with L = 2 can arise
from S-D or P-P interference if one of the two states
has unnatural parity, but requires P-D interference if both
have natural parity. This suggests that the contributions
to A, involving cross terms between natural and unnatural

parity states may be important, particularly for low
energies where one expects the reaction to be dominated

by low angular momentum values.
In conclusion, we believe there are good reasons to

expect that the quantities referred to here as the axial
polarization observables will have an enhanced sensitivity
to the presence of nuclear three-body forces. Clearly,

what is needed at this point is to test this conjecture by
carrying out full three-body calculations with and without
3N forces. If the detailed calculations indicate a high
or even moderate degree of sensitivity, measurements of
the axial polarization observables could well turn out to

play a key role in determining the nature of the nuclear
three-body force. We should also keep in mind that

breakup reactions offer a wealth of kinematic conditions
to be explored, and that there are many axial polarization
observables. One can hope that detailed calculations will
show us how to choose observables and kinematics to
maximize the sensitivity to the 3N potential.

To our knowledge, there are no existing measurements
of axial polarization observables for N-d breakup at
any energy. Such measurements would be relatively
straightforward, and, in fact, plans for an experiment to
measure the longitudinal analyzing power in p-d breakup
are currently in progress at Wisconsin.
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