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Relativistically Covariant Symmetry in QED
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We construct a relativistically covariant symmetry of QED. Previous local and nonlocal symmetries
are special cases. This generalized symmetry need not be nilpotent, but nilpotency can be arranged with
an auxiliary field and a certain condition. The Noether charge generating the symmetry transformation
is obtained, and it imposes a constraint on the physical states.
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Covariance is not manifest in the above equations. The
operator 1/V2 makes the LM transformation nonlocal.
The LM symmetry leads to the existence of a nonlocal
fermionic Noether current and a corresponding Noether
charge, which generates the LM transformation. It also
imposes a constraint condition on the physical states
besides the usual BRST symmetry [5).

Usually we seek Poincare. -covariant symmetries in
gauge theory. In fact, Eq. (2) can be reexpressed in the
following (still not Poincare-covariant) form, with the aid
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Quantum gauge theory is founded on phase symmetry,
but gauge degrees of freedom bring in extra independent
variables. One introduces gauge conditions to suppress
these variables but destroys the gauge symmetry thereby.
In path integral form, with the introduction of ghosts,
gauge invariance is recovered through the passage to the
Becchi-Rouet-Stora-Tyutin (BRST) cohomology [1]. The
BRST theory raises the ghosts to a prominent role for it
regards all fields, including ghosts, as elements of a single
geometrical object, the cohomology.

Since locality has been argued to be the main cause
of infinities in the usual quantum field theory, people
have been turning to nonlocal quantum field theory [2,3].
Nonlocal gauge symmetry plays an important role in
nonlocal quantum field theories.

The recent work of [4] Lavelle and McMullan (LM)
ingeniously reveals that local QED exhibits a nonlocal
symmetry, here called the LM symmetry, which is nilpo-
tent but not Lorentz covariant. They dealt with the fol-
lowing Lagrangian with a gauge fixing term and ghosts
C(x), C(x) [5]:
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where D„= 8„—igpA&. The nonlocal LM transforma-
tion is

+oo +oo

d'x P(Qq) = d'x (Qtg)q (4)

under proper boundary conditions of tt and p, in which
the sign t represents Hermitian conjugation. Examples:
a„, V, 1/V2 [4].

The Lorentz and Coulomb gauges are often used; their
equivalence is easily proved in path integral form. Being
Poincare covariant, the Lorentz gauge is preferred in path
integral formulations, in view of Eq. (1). Accordingly, we
concentrate our studies on Poincare-covariant symmetries
of QED in this paper. We consider a Poincare-covariant
generalization of Eq. (2) of the form

BA„= B~(fC + gC), (5)
where f and g are fermionic operators, that is, include
Grassmann constants. In addition, f and g conunute
with 8„:

a„(f,g) = (f,g)a„. (6)

of the equations of motion for the A„and C, namely, on
shell:

BA„= i B~(q~ C),

BC = —v28„A", BC = 0, (3)

SP = g, (~v'C)y, aP = T« ~v'a. C.
In fact, if choosing the Feynman gauge, i.e., g = 1 in

Eq. (3), one can verify that action is invariant under

Eq. (3) without using the equations of motion, that
is, Eq. (3) represents another kind of nonlocal symmetry
existing in QED, which is equivalent to LM only on shell.
This symmetry is nilpotent, and it too should impose a
constraint on the physical states besides the BRST and
LM symmetries. With the interchange C ~ i C and C ~
iC, one can obtain the antiform of the symmetry defined
by Eq. (3).

LM's work and Eq. (3) show that we do not have the
full story of symmetry in gauge theory, even in QED. In
this Letter we demonstrate that there exists a more general
Poincare-covariant symmetry in QED, which includes the
local and nonlocal symmetries already mentioned. The
symmetry is not nilpotent in general, but it becomes
nilpotent under certain conditions.

In the following we consider only operators 0 that are
sufficiently "regular" in the sense that they possess adjoint
At with
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When A„ transforms by Eq. (5), the transformations of
C, C and tel that leave the action 5 invariant are

6C = ~g~dpA",

BC = —
—,'ft~„A,

BA = —igo(fC + gC)0

Btt = igol(Cf'+ Cg').
in which f and g are regular in the sense of Eq. (4).
One may conclude that even if Eqs. (5)
nonlocal transformation, f and g will not alter the action 5
between the end points of the integration over space; see,
for example, Ref. [4]. Thus, Eq. (5) and Eq. (7) actually
represent a symmetry of QED.

In this generalized transformation, the unique require-
ment on fand g is that they should be regular operators in
the sense of Eq. (4). It is easily checked that the BRST
symmetry, the symmetry of Eq. (3), and their antiforms
are all special examples of this more general symme-
try. In the following we study some properties of this
symmetry.

The generalized symmetry need not be nilpotent in gen-
eral; see, for example, f = Ai, g = A2, %, 4 A2. Nilpo-
tent symmetries such as BRST define a cohomology but
our more general symmetry does not. Moreover, the non-
nilpotent transformation defined by Eqs. (5) and (7) ex-
hibits the commutation relations of super-Lie algebra.

However, our generalized symmetry is nilpotent under
the following conditions. For A„, one can verify that
the following condition leads to B2A„= 0 from Eqs. (5)
and (7):

fg' = gf' (8)
This condition is evidently fulfilled in BRST symmetry
and that of Eq. (3), since one of f, g is zero in those cases.

For C, C, we see that 8 = 0 generally holds only on
shell. In order to have a "strong" nilpotency in the theory
in the sense that B2 (C, C) = 0 off shell and on, we add an

auxiliary term 2E2 to the Lagrangian of Eq. (1), where E
is a bosonic field. Then, the transformation

bC = -'g~a A& — ' gtZ,

BC = —«fthm„A" + ~ftE, (9)

BE = 8„8~(fC + gC)

fixes the action S (with the auxiliary term added in) and
also leads to B2(C, C, E) = 0, where A„ transforms still
according to Eq. (5). It is easy to check that B2A„= 0
still holds under transformation (9).

Thus we have obtained a generalized symmetry of
QED, represented by Eqs. (5) and (9), which is relativis-
tically covariant and nilpotent and includes both local and
nonlocal forms.

The transformations (5) and (9) have an evident addi-
tive group structure. Therefore we take it for granted that
there is an interpolation between the BRST symmetry and

that of Eq. (3). Specifically, iff and g take the values

. ~0
f = A~. g = —i, A~. (

Iff, g do not depend on time, then Q becomes

id x — iioB, A' — 1 —— VAo ( fC+ gC')

—ii, A' — E Bo(fC + gC) . (12)

The nilpotency of the transformations implies Q2 = 0.
The charge is anti-Hermitian and is the foundation of the
cohomology of the generalized symmetry. Since f, g may
be operators generating nonlocal symmetries, it is useful
to extend the usual cohomology to a nonlocal form. This
work is not contained in this paper.

The physical fields must be invariant under generalized
symmetry of Eqs. (5) and (9). Accordingly, the physical
states lql') satisfy

glq'& = 0. (13)

Evidently, this constraint on the physical states covers
many special constraints such as BRST and Eq. (3). In

this sense, the condition Eq. (11) is stronger.
In conclusion, we have exhibited a relativistically

covariant symmetry of QED that covers and generalizes
various local and nonlocal symmetries, including the

Eq. (3), BRST, and their antiforms. This generalized
symmetry need not be nilpotent, but becomes nilpotent
under a certain condition and with the introduction of
an auxiliary field. Evidently QED has new non-nilpotent
symmetries. The symmetry imposes a constraint on the

physical states, which determines the physical states more
strongly than previous symmetries such as the BRST. We
should note that LM symmetry, Eq. (2), is not covariant
except on shell, so it is not included in Eqs. (5) and (7)
strict1y. A larger class of symmetry including covariant
and noncovariant forms is worthy of investigation.
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dation and by the National Science Foundation Grant
No. PHY-9114904. We thank Frank (Tony) Smith, Jr,
for his helpful discussion.

one can easily check that Eqs. (5) and (9) express exactly
this interpolation, which is still a nilpotent transformation.
We can construct various symmetries of QED by selecting

f and g.
The following Noether charge generates the transfor-

mation Eqs. (5) and (9):
(

Q = i d'x &3 ( fC + gC) rloA" —
1
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