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In an attempt to avoid triviality for relativistic quantum ¢ theories for space-time dimensions n = 5,
and possibly n = 4 as well, an additional, nonclassical, nonpolynomial, local potential is included, along
with standard factors in a lattice-regularized formulation of the model. It is argued that if the additional
term redistributes the field probability in the manner characteristic of a generalized Poisson distribution,
then a nontrivial quantization may be achieved, one which also passes to the correct nontrivial classical

theory in the appropriate limit.

PACS numbers: 11.10.Ef, 11.10.Kk

All scalar fields ¢ in space-time dimensions n =5
(and probably n = 4 as well) have the feature of being
classically nontrivial [1] while their present quantum for-
mulations are trivial (Gaussian) [2]. Such trivial quantum
results may be understood as the consequence of forc-
ing non-asymptotically-free field theories into the straight-
jacket of standard lattice formulations that are inherently
consistent with asymptotic freedom. Alternatively stated,
trivial quantum results arise for such theories in the con-
tinuum limit because in high enough space-time dimen-
sions the non-Gaussian parts of the correlations between
fields on neighboring lattice sites are simply too weak to
withstand the stronger Gaussian tendencies implicit in the
central limit theorem. In this Letter I propose an alterna-
tive lattice-space formulation for such models—and im-
plicitly for a wide variety of other models as well—that
promises to yield nontrivial quantum results, and which
should also have the known, nontrivial classical behavior
in the appropriate classical limit. In fact, the proposal
may well offer alternative, nontrivial quantizations for
conventional nontrivial models, such as ¢:, n =< 3; how-
ever, it is for n = 5 (n = 4) that the method should lead
to nontrivial quantizations rather than the physically unac-
ceptable trivial results presently available. In the course
of the next few paragraphs, I will introduce in several
stages the various features that characterize my models.

We begin by showing the equivalence of two distinct
versions of the classical theory. Conventionally, one
begins with a classical field ¢ (x),x € R”?, and an action
functional

[ 6eat) + HidupalP - miedco)
- gqul(x)) d'x.
The associated equation of motion,
O + mP)pa(x) + 4893 (x) = h(x),

admits a solution we denote by ¢ (x; @in, @in, #) that
depends on the initial data ¢;,(x), ¢in(x) (say, at time
t = 0) and the source h. As a second choice we begin
with a field ®;(x, w) which also depends on an auxiliary,
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dimensionless variable w € (0, 1), and for this field we
adopt the action functional

[ @ate ) + § 18,80, )P — m2@E (. w)

— g®4(x,w))d"x dw;

note that the derivatives are still only with respect to x and
none appear for w. The associated equation of motion,

@O + m>)Py(x + w) + 4g<I>C31(x, w) = h(x),

coupled with the particular initial data ®;,(x, w) = @i, (x)
and @y, (x,w) = @ia(x) lead to a solution

Dy (x, w; i Din, h) = e(x; @in, @i, 1),

with all relations holding for w € (0,1). In brief, if one
cannot “initiate” or “test for” any w dependence, then the
two action functionals lead to equations of motion with
identical classical solutions. The present Letter examines
the quantum theory of the second (‘“diastrophic” [3])
theory as a quantum model for ¢2.

A formal expression for a path integral quantization
may be readily obtained. If

Z{h} = (o|Te’ [H@e@ 51
_ (OITeifh(x)d)(x,w)d"xdwlo)
denotes the generating functional of time-ordered Green’s

functions for the field ¢(x) = [®(x,w)dw, then Z ad-
mits a formal functional integral representation given by

Z{h} = N/exp(i[ h(x)®(x,w)d"x dw
+ 1f{% I:(E),ud)(x,w))2 — mzd)z(x,w)]
— g®*(x,w) — P[CD(x,w)]}d"x dw)l_ldd)(x,w);

the additional (nonpolynomial) potential P[®P] (=
P[—®]) is discussed below. A corresponding expression
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for the Euclidean-space generating functional is formally
given by

S{h} = N[ exp([ h(x)®(x,w)d"x dw
- [{%[(Vd)(x,w))z + M2 (x, w)]
+ g®*(x,w) + P[(b(x,w)]}d"x dw)rldfb(x,w),

which, in turn, may be given an x and w, n-
(hyper)cubic X linear lattice-space formulation as the
continuum (and infinite space-time volume) limit implicit
in the expression

R
S{h} = limOnN[exp[zhkcbkrane
r=1

€,a—

1 )
— 5 Y@ Y (P — Py)a" e
- %mg(a,e)szfra”e - go(a,e)Zd):,a"e
— ZP(d)k,,a,e)a"e}nd(Dk,A
k

Here € (= R7!) is the lattice spacing in w,r € {1,2,...}
labels a lattice site in w space, a is the lattice spacing
in x,k = (ki,...,kn), k; € {0,=1,...} labels a lattice site
in x space, and k¥, and an implicit sum, includes % the
nearest neighbors of k, as usual. I have also anticipated
and introduced cutoff-dependent coefficients Y, mg, go, as
well as for the as-yet-unspecified term P.

Clearly, any r dependence of the integration variables
®,, is irrelevant, and in fact the expression prior to taking
the limit is really the Rth power of a “base-theory” inte-
gral. Observe that R then enters in a manner similar to the
number of “replicas” in statistical physics. Although that
number originated from the limit of integration for w, we
shall find it expedient to relax that condition (for n = 4)
and allow for replica number renormalization by hereafter
replacing that number by R = [é7!] = [e 'Q(a)™!] for
some (n dependent) Q(a) = 1, where here [A] denotes the
integer part of A. As a consequence,

S{h} = lim [s(n)]".
sth) = Nf exp[thfbka"s

V(a0 Y (@ — B2

- %mg(a,e)z'_(i)fa"e - go(a,e)szﬁa"e

- ZP(CI)k,a, e)a"e] l_[dd)k .

Apart from the term P and the appearance of the
parameter €, the expression for s(h) is similar to a
conventional lattice-space formulation for the model in
question [4]. We can make that similarity even closer if
we next assume that Y(a, €) = Y(a)e, m3(a, €) = mé(a)e,
and go(a, €) = gola)e®; this dependence on e reflects
the multiplicative renormalization found necessary in
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previous operator treatments of such models [3]. A
simple variable change then leads to our final integral
representation for s(k) given by

No f CXP[Z hedra”

1 > -2
- S Y@ (b — $ua" "

I s
~ S mi@) ) pia" — gola) D pia"

P

D Po(dr.a. e)a"] [1dox.

where we have introduced P, which now carries the only
dependence on e within s(k). If it were not for Py, this
expression would exactly resemble the standard lattice
formulation.

The factor Ny is chosen so that s(0) = 1, and, as a
consequence, the expression for s(k) assumes the alter-
native form

s(h)

|

s(h) = exP[Z(gg)‘l thl o he (i, “'d)k()’ra‘"}
e=1

where averages (---) are defined in the (e, a)-dependent
probability distribution implicit in the expression s(h) =
(exp(X_ hipra™)). Since the ultimate answer of interest
involves [s(h)]%, and R — = as € — 0, a nontrivial result
emerges, when é < 1, provided the truncated correlation
functions satisfy

<¢k1¢k: e ¢k(>7 x €

for all € = 1; with P, and the rest of the potential even,
only the even-order (truncated) moments are nonzero
in the present case. The advantage of arranging this
proportionality to € will become clear shortly.

To this end, let us first recall the usual definition
[4,5] of the dimensionless renormalized coupling constant
gr = limg(a) for the base theory given as a space-time
continuum and infinite volume limit of the expression

gla) = — 2 iim(BoPrbedm)
i od )P [De € bode)/ 2 mlbodm) /2

Let us initially ignore the amplitude dependence and
present the usual argument for triviality. From the
viewpoint of critical phenomena [5], it follows that g(a) =
a'v*r=2/v for small a. For n =5, when the critical
exponents follow from mean field theory, g(a) = a™ ¥,
an expression which tends to zero as a — 0, leading to
triviality. For n = 4, renormalization group arguments
assert that g(a) = 1/|In(ua)| for some mass parameter
w, which as a — 0 also leads to triviality. For n = 3.
hyperscaling ensures that g(a) = O(1) and thus ggr is
nonvanishing.

Next let us pursue the consequences of including
the proper amplitude factors of the truncated correlation
functions. For n = 5,g(a) « € 'Q(a)"'a"~¥, and so for
n =5 we choose Q(a) = [ma/(1 + pa)]" * with u a
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suitable mass parameter. For n = 4 we choose Q(a) =
1/[IIn(ua)l + 1], while for n =3 we set Q(a) = 1.
Therefore, for every n = 1, it follows that g(a) « e !and,
consequently, as a — 0,gg * €~! and is nonvanishing
as well.

The purpose of the term Py is to ensure the required
dependence of the truncated correlation functions on é.
When é is small it follows that

(Br, - i) = (Dr, - i) + O(&) = 0(8),

and thus the role of Py, as well as the remaining
model parameters (Y,m(, and go) in the single-lattice-
site distribution, is, roughly speaking, to divide the total
probability distribution into the sum of two contributions:
(i) one term, a highly concentrated distribution, largely
determined by Py, where ¢, = 0 with a total probability
of 1 — O(&); and (ii) the other term, a nonconcentrated
distribution, largely determined by the remaining model
parameters, where ¢, takes on general values but with a
total probability O(€). Such a division of probabilities
is exactly how various Poisson distributions avoid the
Gaussian vise grip of the central limit theorem [6].

It is entirely reasonable that an extra term should appear
in the renormalized lattice action, the purpose of which is
to reduce the probability of large field values. Recall, for
classical functions, that the Sobolev inequality

U ¢4(x)d"x]% = Cf{[V<i>(X)]2 + m?¢*(x)}d"x

holds for finite C whenever n < 4, but fails to hold for
any C < o whenever n = 5 [7]. Elsewhere we have in-
terpreted such inequalities to imply that any nonrenormal-
izable interaction (e.g., qS:, n = 5) acts partially as a hard
core in function space, projecting out certain field histo-
ries otherwise allowed if the interaction had been entirely
absent [8]. Ignoring fluctuations, the troublesome and so-
projected fields have local singularities (e.g., for |x| <
1) of the form ¢ ~ |x|™7, where n/4 < y < (n — 2)/2;
these large amplitude fields necessarily involve high mo-
menta, but not all fields involving high momenta [e.g.,
¢ ~ cos(x~?)] are troublesome in this sense. Thus a rea-
sonable renormalization for such fields should reweight
their distribution in the manner indicated.

An indication of the general form of P, that should
accomplish our goal may be gleaned from the study
of the explicitly soluble case for n = 1 (i.e., Euclidean
quantum mechanics, and so we set x = ¢) [9]. In this case
Q(a) = 1, but even after a — 0, we are still able to choose
Po(¢,€) so that (d(1)--- b ()T = e. In particular, for
n = 1 and any 'y,% <y < %, we can, after letting a — 0,

choose [9]
1 y(y + D@2 = y8%(e)
Po(¢.€) = 5 7 VW - 52(5)712 =,

8%(e) = (G,

G = J7l(y - 3)/T(y).

Observe in this case that Py is not unique. Nevertheless,
each Py, may be interpreted as a regularized form of a
formal interaction proportional to [ ®~2(¢,w)dw, which
in turn should be viewed as a (decidedly unconventional)
renormalization counterterm for f ®2(¢t, w) dw rather than
for the quartic interaction. This interpretation is supported
by the fact that Py does not vanish when go — 0, meaning
that the zero-coupling limit of the interacting theory,
which retains the effects of the hard core, is not the free
theory but a so-called pseudofree theory; it is expected
that a perturbation theory in the quartic interaction exists
about the pseudofree theory [8]. As a renormalization
counterterm for the kinetic energy, Py contains an implicit
multiplicative factor of %2, which in the classical limit
# — 0 implies that the expected classical theory emerges
as desired. For n = 1 this expected behavior has been
confirmed [10].

For n = 2, and for a suitable (n-dependent) choice of
A, B, and C, it is suggestive that Py has the form

Ala,€)p? — B(a, €)
[¢2 + C(a, €)F

based on what holds for n = 1. Although we have no real
evidence for this hypothesis, it is clear that an expression
of this form will accomplish the stated purposes, and it
has the further advantage that it too may be interpreted
as a renormalization counterterm for the kinetic energy.
To achieve a unique vacuum, the coefficients must be
chosen so that, like the case for n = 1, the distribution is a
generalized Poisson process, rather than just a compound
Poisson process [6]. It may even be possible to determine
Py to a certain degree based on high-temperature series
expansions that exist for a general, even, single-site field
distribution [5]. One may try to determine the necessary
€ dependence of the moments of the single-site field
distribution which ensures that the truncated correlation
functions are porportional to € when € < 1; for this
purpose it is sufficient to focus on the second- and
fourth-order truncated correlation functions. In this way
one may be able to suggest a suitable Py(¢,a,e€) that
leads to the required behavior of the moments. Given
a candidate choice for Py(¢,a, €), Monte Carlo methods
and/or renormalization-group techniques may then be
introduced. Although high-temperature series exist only
for n =< 4, the principles set forth in this Letter may be
applied to study ¢f and d)f, or even ¢§‘, qb;f’, and ¢§,
which include super-renormalizable, genormalizable, and
nonrenormalizable examples.

If the starting point of our discussion had been the auxil-
iary variable w € (a, b) rather than w € (0, 1), then the re-
sult for the truncated correlated functions would have been
|[b — a| times the truncated correlation functions already
discussed. This fact implies that the Euclidean field ¢ will
be infinitely divisible in the sense of probability theory [6];
moreover, in the present case, the Minkowski field is also
infinitely divisible. Already for a Minkowski field divis-
ible into two equivalent fields it has been shown that the
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truncated four-point function vanishes provided one im-
poses the conditions of the Haag-Ruelle theory including
asymptotic completeness [11]. On the other hand, the op-
erator structure of the present models [3] shows that all
four- and higher-point truncated correlation functions ef-
fectively involve composite particles requiring an infinite
multiplicative renormalization (due to forming local field
products with the same w value). This fact raises questions
about any straightforward application of the Haag-Ruelle
theory in the present case and suggests rather a generalized
Lehmann-Symanzik-Zimmermann viewpoint [12]. These
operator-related remarks have relevance for the functional
approach of the present paper. Specifically, we have made
the achievement of a nonvanishing truncated four-point
function our central goal, and granting reasonable spectral
properties of the theory, we would expect to attain nontriv-
ial scattering. This would be a necessary precondition to
have a classical limit that agreed with the known proper
nontrivial classical theory.

A derivation of Green’s functions for two- (or more-)
component scalar fields may be carried out in analogy
with the present treatment. Application to symmetry
breaking potentials may well be relevant for the Higgs
mechanism in the standard model.
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