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We simplify the derivation of the Holevo upper bound on the maximum information extractable from
a quantum communication channel. This simplification leads to upper and lower bounds for binary
channels, both of which depend explicitly on the message ensemble.
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A quantum communication channel is defined by the
action of sending one of n possible messages, with prior
probabilities pi, . . . , p„, to a specified receiver in the
form of one of n distinct (possibly mixed) density opera-
tors pl, . . . , p„on an N-dimensional Hilbert space; the
message states p;, together with their probabilities p;,
constitute the message ensemble. The receiver can per-
form any generalized quantum measurement, described
by a positive-operator-valued measure (POVM), in an at-

tempt to discern which message was sent. The funda-
mental question of quantum communication theory is this
[1]: Which measurements maximize the Shannon mutual
information about the actual message, and just how much
information is that maximal amount I„,? Previous re-
sults on I„, include an upper bound due to Holevo [2]
and a lower bound recently exhibited by Jozsa, Robb,
and Wootters [3]. Both are the best bounds that can be
expressed solely in terms of the total density operator
p = g p;p;, whenever all the p; are pure states, but for
just this reason both bounds are fairly loose for many mes-
sage ensembles. We simplify Holevo s original deriva-
tion, making it accessible to most physicists, and along the
way derive upper and lower bounds for binary channels,
both of which always depend explicitly on the message
ensemble.

Since Holevo's original derivation, various improved
versions have appeared [4,5], but the improvement has
been directed at proving the upper bound for more gen-
eral situations by removing finiteness assumptions on the
Hilbert-space dimensionality, the number of messages,

(2)

and the number of measurement outcomes. In contrast,
we retain the finiteness assumptions, our aim being a
deeper understanding through a more accessible deriva-
tion of the bound. Specific payoffs of this approach are
the ensemble-dependent bounds reported here.

The quantum communication problem [1] is formalized
with the help of the most general quantum mechanical
measurements, described by so-called POVMs [6). A
POVM is a set of non-negative, Hermitian operators Eb
such that gb Eb = lt = (N-dimensional unit operator).
The subscript b indexes the outcomes of the measurement.
The Shannon mutual information [7] with respect to a
measurement (Eb'tis defined by

n

I = H(p) —g p; H(p;), (1)
i=1

where H(p) = —gb tr(p Eb)ln[tr(p Eb)] is the average
information gain upon finding outcome b, when the
density operator is assumed to be p.

The accessible information I„, is defined to be the
maximum of the mutual information I over all measure-
ments (Eb't The Holevo upper bound to I„,is

n

I —S(p) g p S(p )
i=1

where S(p) = —tr(plnp) = —QA, ink, is the von Neu-
mann entropy of the density operator p, whose eigen-
values are A, . Taking OlnO = 0, one sees that S(p;) = 0
whenever p; is a pure state; thus, when all the input states

p; are pure, the upper bound reduces to S(p) and does not
depend explicitly on the message ensemble.
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Holevo's derivation of inequality (2) can be summa-
rized as follows. Trivially the mutual information (1) can
be written as a sum of binary-channel mutual informa-
tions,

ll (
I = Sk H 7k — H Pk

I

H(&i —
i ) ~ (3)j

where sk = g, , p; and 7.
1,

= si ' g, , p;p;. (All the
terms in this sum containing a ~k cancel, except the
contributions from r"„=p and 7~ = pi. ) Thus, if one
can find an upper bound for the mutual information of
a binary channel, one can immediately build an upper
bound for the general case. The bound (2) can, in fact,
be built in just this way, thereby allowing the derivation
to focus on the binary case.

For a binary channel specified by density operators

po and p~ with probabilities 1 —t and t, the mutual
information I —= l(t) can be considered a function of
the parameter t. The Holevo bound takes the form
l„,, (r) S(p) —(1 —r)S(po) —rS(p&) —= S(r), where

p = (1 —
&)po + tpi = po + tA = pi —(1 —t)A and

5 = p] —po. The derivation relies on properties of
l(t) and S(t) as functions of t No. te first that, trivially,
I(0) = l(1) = S(0) = S(1) = 0. Moreover, both I(t) and

S(r) are downwardly convex functions of i, as can be
seen from their second derivatives. For l(r), that is,

g [tr(b, Eb)]'
tr(p Eb)

(4)

The expression (4) for I"(t) is we—ll known as the Fisher
information [8], a quantity of use in parameter estimation.
The second derivative of S(r) is most easily found by
representing S(p) as a contour integral [9],

1
S(p) = — . zlnztr[(zil —p) ']d:,2' l

where the contour encloses the poles at all the nonzero
eigenvalues of p, but does not enclose g = 0. Differen-
tiating within the integral and using the operator identity
(A ')' = —A 'A'A ', one finds that

S/i(r) @(~,, ~i) l~,kl',
(j,k)AI + Ak 40)

(6)

where 4(x, y) = (lnx —lny)/(x —y) if x + y, 4(x,
x) = 1/x, 6,&

= ( j~b, ~k), and ~j) is the eigenvector of
p with eigenvalue A, . Expressions (4) and (6) are both
nonpositive.

The key to deriving the Holevo bound is the follow-
ing: S(r) is an upper bound to I„,(r) for any r if and only
if, when plotted versus t, the curve for S(t) has a more
negative curvature than the curve for 1(t), regardless of
which measurement is used, i.e.,

S"(t) ~ I"(t) ~ 0 for any POVM {Ebj.

The meat of the derivation is in showing this inequality.
Holevo does this by demonstrating the existence of a
function L"(t), independent of {E j, such that S"(t) ~
L"(t) ~ I"(r) for any POVM {Ebj .Upon enforcing the
boundary conditions L(0) = L(1) =- 0, it follows that

l,,„,(t) ~ L(f) ~ S(t) [though in [2] L(t) is not computed
explicitly].

At this juncture quite a dramatic simplihcation can be
made to the original proof. The easiest way to get at
such a function L"(t) is to minimize I"(t) over all POVMs
and thereafter to show that S"(r) ~ L"(r) [T.his is more
tractable than maximizing the mutual information itself
because no logarithms appear in I"( )i.] This approach
generates the same function L"(t) as used by Holevo,
though the two derivations appear to have little to do with
each other. In addition to simplication, the advantage
of this approach is that it pinpoints a measurement that
minimizes I"(r), thus revealing the significance of the

upper bound L(t); moreover, this measurement, though it

generally does not maximize l(r), nonetheless provides a
lower bound M(t) to the accessible information I„„,(r) in,

the binary-channel case.
An efficient way to minimize I"(r) is through a clever

use of the Schwarz inequality, as in the formally identical
problem considered in [10]. The steps are as follows. The
operator inner product tr(AtB) obeys a Schwarz inequality
~tr(AiB)~2 ~ tr(AtA)tr(BtB), where equality holds if and

only if A = p, B for some constant p. The idea is to
think of the numerator within the sum (4) as the analog
of the left-hand side of the Schwarz inequality and
to use that inequality in such a way that the tr(pEb)
term in the denominator is cancelled. This leaves an

expression linear in FI„' summing over the index b then
eliminates the dependence on the measurement. This
requires introduction of the "lowering" superoperator X~.
whose action on the operator A is defined by

—, [pLp(A) + Xp(A)p] = A.

ln a basis ~j) that diagonalizes p, j~(b, ) becomes

. .. ~,klj)(kl,
f j,k I A, + Ai, wO)

which depends on the fact that 5jk = 0 if Aj + Ak
=-

0. [For further discussion of why Eq. (9) is a suitable
extension of X~(A) to the zero-eigenvalue subspaces of p,
see [10]; there X~ is denoted by R~ .] Using Eq. (8),
one easily derives the identity that for Hermitian A,

tr(Ab, ) = Re{tr[pAL~(h)]j.

The desired optimization now follows in short order:

(r) g (Re{trl pEb Lp(~)lj)' [«(pEb)]

——g l«[pEb~;(~)]'/«(pEb)] '
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lt &(~~.i~)' [~~.C; (~)&pal'

b tr(pEb)

—g trf Eb Lt (d )p l't (6)] (B)
b

= —tr[Cp(b)pCp(b)] = —tr[ECp(b, )]. (11)

The conditions for equality in Eq. (11)—i.e., for
achieving the lower bound —arise from steps (A) and
(B): Im[trf p Eb Cb (b )]) = 0 for all b and

JEq[l1 —p, bC~(h)]+p = 0 for all b. (12)

These conditions can be met [10] by choosing the
operators Eb to be one-dimensional projectors onto a basis
that diagonalizes C~(b, ) and choosing the constants p, b to
be the inverse eigenvalues of C~(A).

The function L"(t) can now be defined as

L"(t) = —tr[b Cp(b)]

I jk I'. ( )
2

ukIA, +A'~0} AJ + Ak

The remainder of the derivation of Eq. (2), to show that
S"(t) ~ L"(t), consists of demonstrating the inequality
4(x, y) ~ 2/(x + y) (see [2]). This completes our dis-
cussion of the Holevo upper bound (2).

Now we focus on deriving explicit expressions for
the binary-channel ensemble-dependent upper and lower
bounds L(t) and M(t). The lower bound M(t), in particu-
lar, can be written in quite a simple form. We start with
the generic formula for the binary-channel mutual infor-
mation expressed in a slightly different guise. By defin-
ing at, = tr(poEb)/tr(pEb) and pb = tr(piEb)/tr(pEb),
we write

1(t) = (1 —t) gtr(poEb)lnab + t gtr(p]Eb)lnpb

(= tr (1 —t)pop(lnab)Eb + tpi g(lnpb)Eb
b rb

(14)

The lower bound M(t) arises from using a measure-
ment described by projectors Eb onto a basis that diag-
onalizes C~(b). Note that C~(b, ), C~(po), and Cp(pi)
all commute and are thus simultaneously diagonaliz-
able. This follows from the linearity of the C~ su-

peroperator: C~(po) = C~(p —th) = Il —tC~(lt), ) and

Cp(pi) = Cp[p + (1 —t)h] = 1t + (1 —t)Cp(l1, ) One.
can then show, using Eq. (8), that ab and pb are the
eigenvalues of C~(po) and C~(p]) corresponding to the
projector Eb Hence M(t). takes the form

M(t) = tr[(1 —t)poln[C~(po)] + tp, ln[C~(p])]j. (15)

The upper bound L(t) has not so far yielded such a
simple form. In principle all that need be done is to
integrate Eq. (13) twice, applying the boundary conditions
L(0) = L(1) = 0; the problem lies in finding a tractable
representation for C~(A). Here we note that when p has
no zero eigenvalues, C~(A) can be written as a contour

integral,

Cb(A) = (zl! —p) 'A(zl1 + p) 'dz,
277 l

where the contour contains the pole at z = A, for all
eigenvalues A, of p, but does not contain the pole at
z = —A, for any j. This contour representation leads to a
Fourier series expansion for L(t). It is not difficult, again
using the operator-inverse differentiation formula, to work
out that

(16)

where

d" n

Cp(A) = '. g(—I)"Db(n; k),

farl

k 0
(17)

1
l(t) = —[(1 —t)lr., + tZ, ].

2
(21)

Here Ko = A+In(A+/C+) + A 1n(A /C ) and l() =
B+1n(B+/C+) + B ln(B /C ), where C = 1 ~ c . n
and similarly for A and B . The optimal projectors can

&;(»; &) = fl&(z i] —z)) ']"" '(&(zii + z)) ']"'dz.

With this, one can derive a Taylor series expansion for
L"(t) and then use the standard algorithm for Fourier
expansions to obtain

L(t) = g b sin(mn t),
m=1

where

g n! B(n; m) g (—1) tr[Dp, (n; k)], (19)
1

m 7ri „=0 k=o

B(n; m) = b(n;m) —(—1) g . b(j; rn), (20)
1

0 (n —j).
and b(j;rn) = (—1)J)2[1 + (—I)'](mn) ' The. advan-
tages of this representation are that it automatically sat-
isfies the boundary conditions and only the first few terms
in Eq. (18) are significant.

Finally, we consider a special case of some prac-
tical interest —binary communication channels on two-
dimensional Hilbert spaces. Here the bounds L(t) and
M(t) are expressible in terms of elementary functions;
moreover, the optimal orthogonal projection-valued mea-
surement can be found via a variational calculation. Let
the message states po and pi be represented by vec-
tors within the Bloch sphere, i.e., po =

2 (I + a cr)
and pi =

2 (1! + b cr), where a = lal ~ 1, b = lbl
1, and cr is the Pauli spin vector. (A state is pure if its
Bloch vector has unit modulus. ) The total density oper-

1
ator for the channel can be written as p =

2 (!!+ c tr),
where c = (1 —t)a + tb = a + td = b —(1 —t)d and
d=b —a.

An orthogonal projection-valued remeasurement is de-
fined by two projectors, specified by unit Bloch vectors
n and —n. For such a measurement the mutual informa-
tion l(t) takes the form
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nats

0.15 '

0.1

dimensional subspace; hence Eq. (24) gives the optimal
orthogonal projection-valued measurement for a pure-
state binary channel in all dimensions.

It turns out that 1"(t) is minimized by the measurement
(24). The lower bound M(t) follows from substituting this
measurement into the expression for 1(t) in Eq. (21). The
upper bound L(t), found by substituting the measurement
(24) into I"(t) and integrating twice, is given by

0.05 '

6
L(t) = [ —(6 —c d)ln(B —c d)

2d
—(6 + c d)ln(6 + c . d) + p, t + p&j,

(27)

0.2 Os4 0.6
prior probability t

0.8

FIG. 1. Holevo upper bound S(t), ensemble-dependent upper
bound L(t), information 1(t) extractable by optimal orthogo-
nal projection-valued measurement, ensemble-dependent lower
bound M(t), and Jozsa-Robb-Wootters lower bound Q(t), all
for the case that po is pure (a = 1), pi is mixed with b = 2/3,
and the angle between the two Bloch vectors is rr/3.

be found by varying Eq. (21) over all unit vectors n; the
resulting equation for the optimal n is

C,~ & C,B l
0 = (1 —t)ln a~ + tin b&, (22)

(C A+) l,C B+j
where a~ = a —(a n)n and b~ = b —(b n)n.
Though this transcendental equation generally has
no explicit solution, we can obtain solutions in four
situations: (i) a classical channel, where po and

pt commute (a and b parallel); (ii) po and p) are

pure states (a = b = I); (iii) a = b and t = —,; (iv)

s = (i + )i(i —b )/(1 —e )] '. Cases (ii) —(iv) are s
consequence of setting (I —t)a~ = tb~ and requiring
that the arguments of the logarithms be multiplicative
inverses. Cases (ii) and (iii), reported previously by
Levitin [11],are limits of case (iv).

In case (iv) the optimal n (unnormalized) is given by

a . (a —c) b (b —c)
gg (X b — a.

a . (a —b) b (b —a)
In cases (i)—(iii) the optimal n is

(1 —a c)b —(I —b c)a
n =

D
d+c X(cxd)

D

where c . n = c d/D and
(24)

D= P2l —c2 + c. d2 25

8 = v Dd n = Qd' —(c X d[' = vd' —[a X b('.

(26)
Case (ii) is of special interest because two pure states
in a Hilbert space of any dimension span only a two-

where p) and p2 are determined by the boundary condi-
tions L(0) = L(1) = 0. How tight these bounds are rela-
tive to the Holevo upper and Jozsa-Robb-%ootters lower
bounds is illustrated in a typical case in Fig. 1,

Much remains to be done. Although the Holevo upper
bound (2) for more than two message states can be
built from binary-channel bounds using Eq. (3), the lower
bound M(t) cannot be so generalized. The upper bound

L(t) can be generalized, but we speculate that it becomes
increasingly loose as it is generalized to many message
states. A route to tight upper and lower bounds for many
message states, we conjecture, is to deal directly with the
matrix of second derivatives of the mutual information

(1), a matrix known to parameter-estimation theory as the
Fisher information matrix.
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