Symmetry of the Gap in B12212 from Photoemission Spectroscopy

In a recent Letter, Shen et al. [1] detected a large anisotropy of the superconducting gap in $Bi_2Sr_2CaCu_2O_8$ (Bi2212), consistent with d -wave symmetry from photoemission spectroscopy. Moreover, they claim that the change in their spectra as a function of aging is also consistent with such an interpretation. In this Comment, I show that the latter statement is not entirely correct, in that the data as a function of aging are inconsistent with a d-wave gap but are consistent with an anisotropic swave gap (assuming impurity scattering can be treated as in Ref. [2]).

In Ref. [1], the data show that the gap is close to zero along the (1,1) direction and maximum along the (1,0) direction, just as expected for a gap with $d_{x^2-y^2}$ symmetry. As the sample ages, the gap becomes nonzero along $(1,1)$. This is attributed by them to poorer k resolution due to impurity scattering. This brings up the interesting question of what one theoretically expects for the excitation gap as a function of impurities. I do this for two cases where a spherical Fermi cylinder is assumed for simplicity's sake. For the d -wave case, the gap is assumed to be $\Delta \cos(2\phi)$ and for the anisotropic s-wave case, $\Delta |\cos(2\phi)|$. Thus, the modulus of the gap is the same, the only difference being the symmetry of the gap under rotations.

The self-energy equations at $T = 0$ in the Born approximation are [2,3]

$$
\tilde{\omega} = \omega + \frac{\Gamma}{2\pi} \int_0^{2\pi} d\phi' \frac{\tilde{\omega}}{[\tilde{\Delta}(\phi')^2 - \tilde{\omega}^2]^{1/2}}, \qquad (1)
$$

$$
\tilde{\Delta}(\phi) = \Delta(\phi) + \frac{\Gamma}{2\pi} \int_0^{2\pi} d\phi' \frac{\tilde{\Delta}(\phi')}{[\tilde{\Delta}(\phi')^2 - \tilde{\omega}^2]^{1/2}}, \quad (2)
$$

where Γ is the strength of the impurity scattering. These solutions are then used to determine the angle-resolved density of states:

$$
N(\phi,\omega) = N_0 \operatorname{Im}\left(\frac{\tilde{\omega}}{[\tilde{\Delta}(\phi)^2 - \tilde{\omega}^2]^{1/2}}\right),\tag{3}
$$

where N_0 is the density of states in the normal state. The excitation gap is where N first becomes nonzero. For the d-wave case, this is zero for all ϕ as soon as Γ is nonzero. Instead, the excitation gap employed here is the same as that defined in Ref. [1], that is, where the value of N/N_0 first becomes equal to $\frac{1}{2}$. These result are summarized in Fig. 1. As can be seen, the d -wave case is qualitatively inconsistent with the data, since it becomes rapidly gapless as Γ increases. In contrast, the anisotropic s-wave case gives a behavior consistent with the data, with the gap becoming isotropic (equal to $\Delta/2$) in the large Γ limit.

A final remark is that the gap equations have not been resolved $(\Delta$ was treated as fixed). One can easily

FIG. 1. Excitation gap as a function of position on the Fermi surface for various impurity concentrations for d -wave case and anisotropic s-wave case. The lines are labeled by values of Γ/Δ . The solid points are data from Ref. [1].

calculate the reduction of T_c with Γ

$$
\ln\left(\frac{T_{c0}}{T_c}\right) = c\bigg[\psi\bigg(\frac{1}{2} + \frac{\Gamma}{2\pi T_c}\bigg) - \psi\bigg(\frac{1}{2}\bigg)\bigg],\qquad (4)
$$

where T_{c0} is T_c for the pure system and c is 1 for the *d*-wave case and $1 - 8/\pi^2 \sim 0.19$ for the *s*-wave case. Similarly, Δ decreases as Γ increases with the effect being much larger in the d -wave case. This makes the d -wave case even more inconsistent with the data.

This work was supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

M. R. Norman

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

Received 17 November 1993 PACS numbers: 79.60.Bm, 73.20.Dx

- [1] Z.-X. Shen et al., Phys. Rev. Lett. **70**, 1553 (1993).
- [2] A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 12, 1243 (1961).
- [3] K. Ueda and T.M. Rice, in Theory of Heavy Fermions and Valence Fluctuations, edited by T. Kasuya and T. Saso (Springer-Verlag, New York, 1985), p. 267.