Comment on "VO₂: Peierls or Mott-Hubbard? A View from Band Theory"

In a recent Letter [1] Wentzcovitch, Schulz, and Allen reopened the discussion on the nature of the metalinsulator transition in vanadium dioxide (VO₂). On the basis of LDA (local density approximation) calculations on the monoclinic M_1 structure which gave a semimetal with a very small number of carriers, they concluded that this phase is an ordinary band (Peierls) insulator and not a Mott-Hubbard insulator in which onsite Coulomb correlations dominate. The authors, however, presented results only for one of the insulating phases of VO₂: They and others have pointed out that all V⁴⁺ ions are in singlet V-V pairs which makes a clear distinction impossible. In this Comment we wish to remark that this ambiguity does not apply to the other insulating phases of VO₂, which are clearly of the Mott-Hubbard type.

There are two structural components to the lattice distortion from the high temperature rutile (R) phase, namely a pairing and a twisting of V-V pairs out of the rutile axis c_r . Around twenty years ago the nature of a second monoclinic insulating phase (M_2) was established [2]. The metal-insulator transition is $R \rightarrow M_2$ in $V_{1-x}Cr_xO_2$ with x very small ($x \ge 3 \times 10^{-3}$) [2] or in pure VO₂ [3] when a small uniaxial pressure is applied along (110)_r. In M_2 one-half of the V chains of the R phase pairs but does not twist and the other half twists but

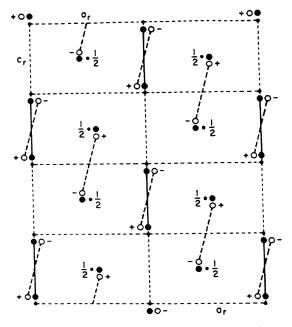


FIG. 1. Comparison of V-V pairing in the three phases $(R, M_1, \text{ and } M_2)$. In M_1 (open circles) all the vanadium atoms both pair and twist from the rutile positions. In M_2 (filled circles) one-half of the vanadium atoms pairs but does not twist and the other half forms unpaired zigzag chains. (The distortions are exaggerated by a factor of 2 for clarity.)

does not pair (see Fig. 1). There are simple electrostatic reasons that the pairing on one set of V chains induces a twist in the other V chains. Thus the M_1 phase of VO₂ can be viewed as a simple superposition of two lattice distortions of the M_2 type.

In M_2 one-half of the V⁴⁺ ions form equally spaced V chains, and NMR and EPR experiments show that they behave magnetically as $s = \frac{1}{2}$ Heisenberg chains ($J \approx$ 300 K). It is clear that these V chains in M_2 are magnetic (or Mott-Hubbard) insulators. Since M_2 can be stabilized by minimal perturbations, it is also clear that M_2 is a local minimum for VO₂, whose free energy is only very slightly higher than that of M_1 at room temperature and pressure. Further cooling leads to a continuous $M_2 \rightarrow M_1$ transition through an intermediate insulating triclinic (T) phase where pairing (or dimerization) on one set of V chains grows continuously [4].

The M_2 phase is a Mott-Hubbard insulator and the M_1 phase is a superposition of two M_2 -type lattice distortions. Further a continuous $M_2 \rightarrow M_1$ transition through the intermediate insulating T phase is observed with decreasing temperature. These experiments led us to conclude previously [2,3] that all the insulating phases of VO₂, $(M_1, M_2, \text{ and } T)$ were of the same type and should be classified as Mott-Hubbard and not band insulators.

T. M. Rice

Theoretische Physik, ETH-Hönggerberg, 8093 Zürich, Switzerland

H. Launois

Laboratoire de Microstructures et de Microélectronique, 196 Avenue Henri Ravera, 92220 Bagneux, France

J.P. Pouget

Laboratoire de Physique des Solides, Université de Paris-Sud, Bâtiment 510, 91405 Orsay, France

Received 24 June 1994

PACS numbers: 71.30.+h, 61.50.Ks, 71.25.Tn

- [1] R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. **72**, 3389 (1994).
- [2] J.P. Pouget, H. Launois, T.M. Rice, P. Dernier, A. Gossard, G. Villeneuve, and P. Hagenmuller, Phys. Rev. B 10, 1801 (1974).
- [3] J.P. Pouget, H. Launois, J.P. D'Haenens, P. Merender, and T.M. Rice, Phys. Rev. Lett. 35, 873 (1975).
- [4] Note, however, the initial transition $M_2 \rightarrow T$ is discontinuous.

3042

© 1994 The American Physical Society