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Critical Behavior of Density of States in Disordered System with Lacab~ed Electrons
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The Coulomb gap in the density of states (DOS) of localized electrons is studied at different

magnitudes of an external disorder A. Computer modeling has been done to find the DOS at the
chemical potential Gr as a function of temperature and A. At a given filling factor all curves Gr(T)
obtained at different values of A and even from different distribution functions of the external disorder
cross each other at one temperature T, . We show that GF obeys an equation with a 6xed point. At this

point the subsystem of electrons with energies close to the chemical potential becomes incompressible.
A weak singularity of thermodynamic functions at T = T, is predicted and found by modeling.

PACS numbers: 71.27.+a

The interest in the Coulomb gap in the single-particle
density of states (DOS) of two-dimensional localized elec-
trons has been recently stimulated by observations of a
tunneling gap in heterostructures [1] and quantum wells

[2]. The problem of the Coulomb gap was originally
associated with strongly disordered systems [3—7]. The
following classical Hamiltonian has been studied tradi-

tionally [8]:

Letter that GF does depend on A. Only in the limit A ~ ~
the DOS GF tends to a universal function G (T), which is
linear in temperature and is independent of A and t . We
have found a critical behavior at some temperature T, . At
this temperature GF becomes independent of A and coin-
cides with G (T,). We argue that there is also a singular-

ity of a chemical potential at this point.
A computer modeling for the 2D case is done using the

conventional Monte Carlo method with the Hamiltonian
equation (1) on a square lattice with quasiperiodic bound-

ary conditions (for details see Ref. [9]). Only the results
for the DOS at the chemical potential GF =—G(EF) are

discussed here.
It has been shown [10]that the Coulomb gap exists also

without any external disorder. In this case the system is
ordered at T = 0. However, this ordered phase melts at a

very low temperature, and an internal disorder provides
a soft gap near EF. We have proposed [11] the gap
at A = 0 as an explanation of the gap in the tunneling

density of states observed by Eisenstein, Pfeiffer, and

West [2]. However, the DOS at the chemical potential

GF as a function of temperature has never been studied

before in detail.
Our calculations show (see Fig. 1) that in a wide

temperature range and at three different filling factors the

DOS at the chemical potential GF at A = 0 obeys the

equation

e [v(1 —v)j 1
Go =—GF(A = 0) = 0.85exp —0.3

(3)

(4)
where lattice constant is of unit length. The physical rea-
son for this law is as follows. Every electron pushes out
other electrons creating a polarization around itself. Thus,
all occupied sites are shifted down in the energy with

respect to vacant sites. This is a kind of a polaron shift

due to the other electrons. That is why the DOS consists
of two peaks with the chemical potential between them.

The states near the chemical potential appear as a result of
thermal fluctuations destroying the polaron clouds around

some sites. The probability of such fiuctuation is propor-

1 e
H = gP;n; + —g —(n; —v)(nj —v). (1)

i/j ~J

The problem is formulated on a lattice, n; = 0, 1 are oc-
cupation numbers of lattice sites, and t is the average oc-
cupation number, i.e., the filling factor of the lattice. To
make the system neutral, each site has a positive back-
ground charge ve. The external disorder is introduced by
the set of random energies P; distributed uniformly within

the interval (—A, A).
Efros and Shklovskii [4] have proposed that the density

of states G(e) of the single-particle energies e;,
2

e;=@;+g—(n, —p), (2)
j4i ~J

has a Coulomb gap near the chemical potential EF.
The low-temperature behavior of the DOS around EF is
universal: It depends neither on A nor on v. In this

Letter we discuss only two-dimensional systems. In this

case, it has been predicted that, at T = 0,
2

G(e) = (e —EF).
me4

Computer simulations [5—8] mostly confirm this result;
ho~ever, some deviations from the universal behavior
have been reported [6,7].

At finite temperatures, the DOS at the chemical po-
tential GF —= G(EF) becomes nonzero, and it is of the

order of T/e4. The universality of GF(T) follows from
the universality of G(e). At A = 1 the linear tempera-
ture behavior has been checked by a computer modeling
in Ref. [9]. The result is that GF = 1 3T/e4 By doin. g.
computer modeling in a wide range of A at lower tempera-
tures and at larger arrays than in Ref. [9], we show in this
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FIG. l. DOS at the chemical potential vs temperature for
A = 0 and different filling factors as obtained by computer
modeling with s = ~ and at system size 300 x 300. The solid
line shows the fit, given by Eq. (4).

0.085 0.86T
2 4e s e

(6)

We show here that this expression is a good approxima-
tion for the limit of GF at A

tional to exp( —R;„/T), where R;„ is a minimum work
to create such fluctuation. Because of electron-hole sym-
metry of the Hamiltonian this work is of the order of
[v(1 —v)]'~2 in the units of interaction between the near-
est neighbors. This is an interpretation of Eq. (4). It dif-
fers essentially from the explanation of the Coulomb gap
at large disorder. In the latter case the interaction between
low energy excitations provides the upper boundary for
the DOS. It follows from this Letter that at A = 0 the in-

teraction between polarons also becomes important when
the average distance between them is of the order of e2/T.

One can see that there is a dramatic difference in low-
temperature behavior of the DOS at the chemical potential
with and without the external disorder. The exponential
dependence of the DOS at A = 0 transforms with increas-
ing A into a linear one. In order to study a crossover
between these two regimes one must compute GF down
to very low temperatures. However, such calculations are
hampered by a strong size effect. To reduce it we screen
the long-range part of the Coulomb interaction by intro-
ducing a second metallic plane, parallel to the layer with
electrons, at a distance s from it. Then the interaction po-
tential between two electrons has the form

V(r) = e
1 1

(5)r gr +4s
At large distances V(r) looks like a dipole potential,
and GF now tends to some finite value as T goes to
zero. The DOS for such interaction was calculated by
Mogilyanskii and Raikh [12] using a generalized self-
consistent equation. Their result for the DOS at the
chemical potential reads

For computer modeling we used s = 3 and s = 5
in units of the lattice constant. These large values
do not change DOS substantially anywhere except the
close vicinity of EF, but eliminate the size effect. The
simulation shows that the behavior of GF at zero disorder
is not changed qualitatively by the screening, only the
numerical coefficients in Eq. (4) slightly depend on s.
Therefore, at finite s, the transition from zero to large
disorder manifests itself as a transition from zero to finite

GF atT =0.
The results of the computer simulation for the DOS at

the chemical potential GF as a function of T are shown
in Figs. 2(a)—2(d) at different values of A, s, and p. The
DOS GF changes with A within the interval limited by the
function Go at small A and by the function G at large A.
One can see that universality of GF with respect to A and
v appears only in the limit of large A, where GF is close
to Eq. (6). At finite A the DOS is not universal.

The most interesting feature of Fig. 2 is that all curves
cross each other at the same temperature T, = 0.04. Both
T, and GF (T,) depend on s at large s very slightly, and,
obviously, tend to some universal constants as s
To make this picture even more general we change the
rectangular distribution of random energies P in the
interval (—A, A) to a Gaussian distribution with mean
square fluctuation equal to A. One can see from Fig. 2(d)
that this changes neither T, nor DOS at T = T, .

We propose the following one-parametric scaling the-

ory to explain this very nontrivial property. The main
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FIG. 2. DOS at the chemical potential GF vs temperature
for different A. The symbols show the results of computer
modeling at system size 100 X 100, the solid lines are plotted
using Eq. (11), and the dashed lines show G as obtained
from Eq. (6). Plots (a)—(c) are for rectangular distribution
P;, aud plot (d) is for Gaussian distribution. Parameter Ao in
Eq. (11) is chosen to give the best fit. It is 0.5 for rectangular
distribution and 0.32 for Gaussian.
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where

(9)f( F)
I gG

The derivative REF/BA is a smooth function of A which
tends to a constant value as A ~. Since GF G as
A ~, it follows from Eq. (8) that f(G ) = 0. Thus,
GF = G is a fixed point for Eq. (8). At all values of
A the curves GF(T) cross the function G (T) at the same
temperature T = T, because, if GF = G, the derivative
BGF/BA = 0. This explains the results shown in Fig. 2.

%e assumed before that s = ~ and the interaction is
e2/r This is not. an important limitation unless e /s is
much less than the width of the Coulomb gap. Otherwise
GF depends on A even at large A [13] and, therefore, the
fixed point disappears.

concept in the theory of the Coulomb gap [4] is that
the DOS in the energy interval of the order of T near
the chemical potential EF is determined by the interac-
tion of electrons inside this interval only. Let us consider
the electronic states within the energy interval of order T
near EF as a subsystem with a strong internal correlation
and assume a weak correlation of these states with the
other parts of the system. This subsystem is character-
ized by an electron density n = GFT and the temperature
T. Now we assume an infinite s and the Coulomb in-

teraction only. The only dimensionless parameter which
determines the interaction inside the subsystem is the ra-
tio of the interaction energy between electrons of the
subsystem e2n'~2 to the thermal energy T. This ratio is
proportional to QGF/G . The correlation energy of the
subsystem depends on A through GF only. To check di-

rectly this important assumption we have calculated the
correlation function of occupied and empty sites within
the energy interval of the order of T near EF at A = 0 and
A = 1, and we have shown that they perfectly scale into
each other in units GF [13].

The subsystem is in thermodynamic equilibrium with
the rest of the system. Thus, the chemical potential p, of
the subsystem is equal to EF. However, p, can also be
found through the total energy of the subsystem. Then,
it will be a function of GF, T, and the total electron
density N The d.ependence on N appears because in
coordinate space the subsystem is dissolved in a total
system. Then, p, contains the ratio of numbers of solute
atoms and solvent atoms GFT/N. However, p, depends
on A through GF only.

Differentiating the condition EF = p, (GF, T, N) with

respect to A, one gets

REF 8p BGF

BA BGF BA
'

where all derivatives are taken at constant T and N. From
this equation we get

(8)

Near the fixed point Eq. (8) can be written in the form

BA A

Assuming that this expansion works in a wide range Qf A

and T with a constant value of Ao, we get

GF(T) = G (T) 1 —exp~ ——
~

Ao)

+ Go(T)exp~ ——~. (1 1)
Ao)

Here Go and G are given by Eqs. (4) and (6). Equa-
tion (11) should be considered as an extrapolation, but
it fits well the results of computer simulation shown in

Fig. 2. The value of Ao is approximately 0.5 for a rect-
angular distribution of random energies P; and Ao = 0.32
for a Gaussian distribution. The unit of Ao is the interac-
tion energy between nearest neighbors.

Since GFT is the electron density of the subsystem,
we obtain from Eq. (9) that the compressibility of the
subsystem (Bp,/Bn) ' = T(8p, /BGF) ' becomes zero at
GF = G . The reason is that at T = T, the state of the
subsystem at any A is the same as at A = ~. In this state
the DOS GF is described by Eq. (6), it is universal, and
it cannot be changed by any change of A or v. One can
show that at v ( 0.5 the derivative REF/&A & 0. Then
it follows from Eqs. (7)—(10) that the compressibility of
the subsystem is positive at T ~ T, , when GF & G and

negative otherwise. Zero compressibility means that the
chemical potential p, has a singularity at GF = G . Thus,
on a diagram GF(T, A) the plane GF = G (T) separates
the states with positive and negative compressibility of
the subsystem. Figure 2 shows that one cannot cross
this plane by changing A. However, at any value of A

one can cross it by changing T over the point T = T, .
The incompressible state must provide the singularity of
thermodynamic functions of the subsystem in this point.
The contribution of this singularity to the thermodynamics
of the total system should be small as the ratio of the
electron density in the subsystem to the total density at
T = T, . The subsystem density is GF(T,)T,. At v = 0.3
and s = 3 this product is about 2.8 && 10 3 per lattice site.
Thus, in our case this is at least 100 times smaller than the

total density v.
To check this conclusion we have performed a cal-

culation of the chemical potential of the system EF(T)
near T, . One can show that the occupation of a site
with energy e is described by the Fermi function [11].
Thus, EF has been found as an energy where the DOS
of occupied and empty states are equal to each other.
Our results at A = 0.4 are shown in Fig. 3. We have

averaged EF through six different sets of p with array

size 100 x 100. %ithout a singularity one should expect
EF(T) = EF(0){1+ const x [T/EF(0)]2) dependence at

T (( EF(0). we see instead a maximum at T = T, in the
scale corresponding to the above estimate.
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FIG. 3. Chemical potential EF vs temperature as obtained by
computer modeling at A = 0.4, s = 3, and p = 0.3. The results
are averaged over six sets of P with array size 100 X 100.
Solid line is a guide for the eye.

Finally, we have found that the universal linear tem-
perature dependence of GF is valid only in the limit of
large A, where it fits the solution of the self-consistent
equation. The new equation for GF has been proposed
which has a fixed point at T = T, . This equation explains
the unusual behavior of GF(T, A) and a singularity of EF
atT=T, .

We are grateful to M. E. Raikh, E.I. Rashba, B.I.
Shklovskii, and John Worlock for stimulating discussions.
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