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The distribution of quadrupole phonon strength to low-lying states in nuclei is examined. It is found
that the 2; and 4, states of all nuclei from Z = 30 to 100 display almost perfect quadrupole phonon
character even though they encompass widely ranging structures. The interacting boson approximation
reproduces both the very small deviations from phonon purity and the distribution of those deviations
as a function of mean field structure in a natural fashion. Simple physical mechanisms explain these

results.
PACS numbers: 21.10.Re, 21.60.Ev. 21.60.Fw

There has recently been renewed interest in the ap-
plicability of phonon models [1] in nuclear structure.
Examples of phonon and multiphonon behavior have
been found [2-10] in a variety of contexts ranging from
spherical to transitional and deformed nuclei and from
yrast states to intrinsic collective modes. The growing
recognition that phonon modes are widespread, and that
multiphonon excitations often survive intact in the low
degeneracy nuclear environment, motivates a further
study of the empirical and theoretical phonon structure
and interrelationships of the low-lying yrast levels of col-
lective nuclei. In particular, it was shown in Ref. [4] that
an anharmonic vibrator, with constant anharmonicity, can
describe the yrast energies of all nonrotational collective
nuclei from Z = 30 to 82. It is therefore pertinent to
ask if it is possible to directly test this phonon picture,
that is, to assess whether or not the wave functions of
the low-lying levels of collective even-even nuclei can be
accurately described in terms of phonon excitations.

It is therefore the purpose of this Letter to use B(E2)
values to show that the 2] and 47 levels for all nuclei
from Z = 30 to 100 display excellent quadrupole phonon
purity and that this result is a natural property of the
interacting boson approximation (IBA).

A quadrupole phonon excitation |2,°2) of the ground
state is defined by

127 2)pn = NQ2107). (1

where O, is the quadrupole operator, N is a normaliza-
tion factor, and the labels refer to spin, parity, and mag-
netic substate. Multiple “Q-phonon” states are created by
repeated application of Q. Note that such states can be
called phonons even for rotational excitations in that the
phonon accelerates or decelerates the rotation.

This Q-phonon picture can be tested empirically or
theoretically. If

B(E2:0; —27) =0 foralli> 1, 2)
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then Eq. (1) is satisfied for the 2| state. However, if the
phonon strength is distributed over several 27 states, that
is, if

1272 =B1127) + D Bil2]). where > Bi=1. (3)
i>1 i

then Eq. (2) does not hold. A measure of the phonon
distribution is given by
Zi>l B(E2:0] — 2)

RY = o (4)
=1 B(E2:0] — 2]")

where i labels the 27 states.
we have

From Egs. (3) and (4).

R¥ => B} =1-pi. (5)

i>1

Thus, R directly measures the fraction of the Q-
phonon strength to 2" levels other than 2; and indicates
the 1-phonon purity of the 2| level. Of course. that
collectivity may ultimately have origins in higher states
such as the giant quadrupole resonance (GQR), but our
purpose here is to focus on the nature of the resultant
collectivity, not its microscopic origins, and on the
phonon interrelationships of the low-lying yrast levels.
Hence, in the sums in Eq. (4), it is necessary to explicitly
exclude the GQR and to focus on the low-lying collective
2" states. In effect, we view Egs. (1)-(5) as referring
to the Ofhw space, regardless of whether or not the
microscopic origin of this collectivity resides in the GQR.

The same prescription for Eq. (4) arises from a com-
plementary source. As the aim of the present study is
to confront the data with calculations of collective nuclei,
we need to choose a model that can offer predictions for
a full variety of collective structures in a unified frame-
work with a minimum of parameters. In practice, the
only available model is the IBA [11], in which the full
panopoly of observed collective structures can be repro-
duced with only two parameters. (Ultimately, of course,
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a shell model understanding of phonon structure would be
desirable, but practical calculations for all mass regions
and structural varieties are currently not feasible.) Inas-
much as the IBA is a valence space model for low-lying
collective states, it is essential that the data set used in
Eq. (4) do likewise.

First, we consider the experimental situation. We have
evaluated empirical R® values for all collective nuclei
[nuclei with Ry = E(47)/E(2{) > 1.9] from Zn to Fm,
where absolute B(E2) values to more than one 2" state
are known. All known B(E2:0; — 2;) values to discrete
2% states were included. The results for 101 nuclei are
summarized in Fig. 1. Though it is, of course, commonly
recognized [12] that the B(E2) from the ground state to
the 2] level is usually dominant, the quantitative degree
of this dominance has not been discussed and is striking
indeed. R? is always small: it is <0.09 in 96% of
these nuclei (moreover three of the four exceptions have
large errors). R® is <0.06 in 85% of the cases and its
average value is about 0.03: Note that this overwhelming
(97%) dominance and phonon purity is independent of
the detailed structure of these nuclei, which comprise
all varieties of structures including near harmonic and
anharmonic vibrators, y-soft nuclei, transitional nuclei,
and rotors. The data in Fig. 1 also show interesting
features in the distribution of R® values, in particular,
the peak near 8% —9%. This is not a statistical fluctuation
but reflects a specific group of nuclei (Os) and type of
structure: To see this, we show the R values for Hf—Pt
in the inset to Fig. 1.

We now turn to the IBA. The 2 (and 4;) states are
pure phonon excitations in all three symmetries. Though
long known for U(5), the phonon description of O(6)
was only recently given [8]. R®@ vanishes for all three
dynamical symmetries U(5), O(6), and SU(3), because
the selection rules (Any; = 1), (A7 = 1,Ac = 0), and
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FIG. 1. Histogram of experimental R® values for 101 nuclei

from Zn to Fm obtained from all known B(E2:0; — 2;°) values
tabulated in the Nuclear Data Sheets. The inset shows detailed
R®@ values for Hf-Pt nuclei plotted against E(4;)/E(27).

[A(A, u) = 0] forbid all E2 transitions from the ground
state to any state other than 2;. Outside the symmetries
we study the behavior of R® by systematically exploring
the symmetry triangle (see Fig. 2) with the consistent Q
formalism (CQF) [13], by writing

H=—-kQ(x) * Qx) + eng, (6)

where

Qoulx) = std, + dfs + x(@d)P. o)
The E2 operator is T(E2) = epQ(x). [The effective
charge ep cancels out in Eq. (4).] With no loss of
generality, we take « constant throughout at —0.025 MeV.

We first study the U(5) — O(6) transition leg which
is the easiest to understand. In both limits we take
X =0 and N = 6. The transition region is traversed by
varying € (or, equivalently, £/«) from infinity [U(5)] to
0 [O(6)]. The results for R are shown in Fig. 2(a).
The most striking feature is the extreme smallness of R?
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FIG. 2. Top right, the IBA symmetry triangle. The other
panels give calculated values of R® [or R® for panels (f)
and (g)] giving the absolute magnitude of phonon mixing in the
2} and 4; states in the IBA for various trajectories along the
symmetry triangle. (See text for details.)
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everywhere along the U(5)-O(6) transition: R, is only
0.002.

This result may be understood by expanding the IBA
wave functions in an O(6) basis instead of the usual
U(5) basis. The O(5) symmetry is common to both
U(5) and O(6), and hence [14,15] 7 is a good quantum
number throughout the transition from U(5) — O(6),
and the A7 = *1 selection rule for the E2 operator
also persists. Hence also the mixing of the 0* and 2%
O(6) basis states is restricted to states with the same
7 and different o. Except very close to U(5), then,
the low-lying physical states are composed mostly of
two O(6) components, with ¢ = N and N — 2 [see
Fig. 3(a)]. Contributions from O(6) basis states with
o < N — 4 are only significant close to U(5). From
the wave functions, the contribution of various E2
matrix elements to the physical B(E2:0; — 2;") values
can be quantitatively determined. There are only two
significant nonvanishing contributions to B(E2:0; — 2;)
values. For the B(E2:0{ — 2{) value, the two O(6)
amplitudes 0*(oc = N, 7 = 0) = 2*(0 = N, = 1) and
0"f(c =N-271=0—2%(c=N-2,7=1) add
coherently while for the other [usually the B(E2:0] — 23)
value], by orthogonality, they nearly cancel. [The compo-
nent 0"(c =N —-4,71=0—2(c=N—-41=1)
further enhances the cancellation as U(5) is approached.]
Hence, the B(E2:0{ — 2{) nearly exhausts the strength.

For O(6) — SU(3), e =0 and y varies from 0 to
—1.32. Calculations were performed for N = 6 and with
N varying linearly with y from 4 to 16. The results in
Figs. 2(b) and 2(c) show that R@ is again very small,
with a maximum of ~0.05. A phonon description is
thus again preserved to a very high degree. The U(5) —
SU(3) transitional region calculations were carried out by
decreasing £/« as y varies in the range 0 — —1.32. As
Figs. 2(d) and 2(e) show, R® < 0.05.

These results can also be easily understood. It is again
useful to use a different basis: We expand the wave
functions in SU(3) [see Fig. 3(b)]. The primary mixing
matrix elements, in this basis, have AK = 0 [15]. Thus

a) 0(6)-Basis b) SU(3)-Basis
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FIG. 3. Partial level schemes of O(6) and SU(3) showing the
most relevant basis states.
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the principal mixing for low-lying states is between the
SU@B3) K = 0 ground band [(2N,0) representation] and
the K = 0 (“B”) band of the [2N — 4,2] representation.
However, the mixing of 0* and of 2* states is comparable,
as are the intraband SU(3) E2 matrix elements, and,
hence, by orthogonality, the B(E2:0; — 2{) value is little
affected by the mixing, and the B(E2:0{ — 23) value
nearly vanishes by cancellation. However, there is also
weak AK = 2 mixing of the SU(3) 27 state (quasi-y-
bandhead) with the 2% states of both the ground and
the [2N — 4,2] K = 0 excitations. Since there is no
“0,” level available to provide cancellation, both of
these admixed 2* states contribute (the latter via the
intermediary of the aforementioned AKX = 0 mixing) to
yield a small B(E2:0{ — 2}) value which is the main
contributor to the numerator of R®@.

The results in Fig. 2 encourage us to pursue the validity
of this Q-phonon picture in a more general context that
comprises all the manifestations of collectivity in the
IBA. We have therefore carried out a thorough set of
calculations with a rather fine mesh of internal paths
in the symmetry triangle. The results for N = 6 are
shown in the contour plot in Fig. 4. (Similar results are
obtained for other N values.) Remarkably, R® is always
small. Its maximum values are along the O(6) — SU(3)
transition leg and, for any N < 16, the maximum value,
independent of the IBA parameters (i.e., for any «, &, xy
in the symmetry triangle), is R® < 0.07. The average
value is ~0.02. As we saw in Fig. 1, the experimental
values are equally small, averaging ~0.03 and nearly
always <0.09. Thus, the IBA predicts that the 2; level
is a nearly pure one-quadrupole-phonon excitation of the
ground state induced by the Ohw operator Q. Note
that this prediction is inherent to the model. Were the
data different, the model predictions could not be altered
accordingly.

The peak in R® in Figs. 2 and 3 between O(6) and
SU(3) is also interesting since it mirrors the empirical
R distribution in the inset in Fig. 1. The maximum
R®@ values occur for precisely the nuclei '®6-'20s that
are the archetypical representatives of the O(6) — rotor
transition [16]. Thus, not only does the IBA reproduce the

u®)

FIG. 4. Contour plot of R® throughout the symmetry triangle.
N = 6.



VOLUME 73, NUMBER 22

PHYSICAL REVIEW LETTERS

28 NOVEMBER 1994

empirical fact of very small R® values, but it reproduces
the detailed distribution of R® values across transition
regions, as exemplified in Fig. 1 (inset).

It is useful to put these results in a more general
context. The usual fermion E2 operator consists of proton
and neutron parts, with separate effective charges. This
feature is conveyed to the boson situation in the IBM-2
(Ref. [17]), where

T(E2) = €5 Q5 + e£QF . ®)

In low-lying states, the proton and neutron motions are
coherent, and such states are connected to the ground
state predominantly by the isoscalar component of T.
There is an overwhelming concentration of strength due
to this operator from the ground state, leading to the Q-
phonon picture. In this sense, the Q phonon is largely of
isoscalar nature (F scalar for bosons), and the quadrupole-
quadrupole interaction naturally favors this excitation at
lower energy. At higher energies, there should be states
excited by the isovector E2 operator. In the IBM-2, these
are mixed-symmetry states but are excited very weakly by
E2 transitions [18] [with B(E2:0; — 2) ~ 10711072 of
B(E2:0{ — 2{)].

The above IBA analysis can be extended to the 4;
state. As for the 2; state, we ask the extent to which
|47 4) = NQo |21 2): that is, we write

NO»I2{2) = ail4f4) + D aild} ). 9

i>1

We define R™® analogously to Eq. (4) in terms of B(E2:
27 — 47) values. Examples of the results are shown
in Figs. 2(f) and 2(g): R® is again very small. The
maximum value for any N, k, &, or y is only 0.01, which
is nearly an order of magnitude less than R?) . The
reason is simple and interesting. As with R?, the largest
R™ values occur between O(6) and SU(3) and mixing
arguments given for R® apply here except that even the
y — g E2 contribution to R is now largely cancelled
since there are both 27 and 4] levels to mix with 27 and
47 . Note that the high purity of the 4* state holds for the
02121 2) configuration: Q,,0,,10) is less pure.

The above discussions highlight an important point.
The small values of R® and R® are not somehow a
trivial result but rather stem from basic properties of
the symmetry limits, from the characteristic ways in
which these symmetries are broken, and from subtle but
pervasive and strong cancellation mechanisms.

To conclude, we have shown quantitatively that the
empirical 27 states of all collective even nuclei from Z =
30 to 100 nearly exhaust the known 0% w E2 strength from
the ground state. Strength to all other known 2* states
averages only about 3% and exceeds a 10% fraction in

only 1%-2% of nuclei (and most of these cases have large
uncertainties). A thorough mesh of IBA calculations,
comprising essentially all types of collective structures,
shows that the model naturally and unavoidably produces
exactly the empirical result: R@ is always less than 0.07
independent of the CQF-IBA Hamiltonian parameters.
The agreement of calculated with empirical R® values is
not limited to global averages. For example, the large R®
values between Hf and Pt (Fig. 1, inset) are reproduced
by the IBA for nuclei spanning an O(6) — rotor region
[Fig. 2(c), Fig. 4]. Finally, an even higher Q-phonon
purity is calculated for the 4] state as a single Q-phonon
excitation of the 2; state.
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