
VOLUME 73, NUMBER 22 PHYSICAL REVIE% LETTERS 28 NovEMBER 1994

Can Galactic Observations Be Explained by a Relativistic Gravity Theory~
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We consider the possibility of an alternative gravity theory explaining the dynamics of galactic
systems without dark matter. From very general assumptions about the structure of a relativistic gravity
theory we derive a general expression for the metric to order (u/c)'. This allows us to compare
the predictions of the theory with various experimental data: the Newtonian limit, light deflection and
retardation, rotation of galaxies, and gravitational lensing. Our general conclusion is that the possibility
for any gravity theory to explain the behavior of galaxies without dark matter is rather improbable.
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Einstein's gravity theory and some other alternative
gravity models are in good agreement with the experi-
mental data in the solar system and the laboratory [1].
However, the behavior of galactic systems poses a great
challenge to gravity theories. For virtually all spiral galax-
ies the tangential rotational velocity curves tend toward
some constant value. This fact is in sharp contradiction
with the visible star (luminosity) distribution and the laws
of Newtonian dynamics. The stars in the outer parts of
galaxies rotate several times faster than predicted by the
standard gravity theory. A similar problem is observed
in gravitational lensing [2]. Just as in the solar system
problems of the past century (concerning the orbits of
Uranus and Mercury), there are two ways to resolve these
difficulties.

One, the most widely adopted, is the dark matter hypoth-
esis [3]. It is presumed that the visible stars are imbedded
in a massive nearly spherical halo of nonluminous matter.
The mass of the halo varies from one galaxy to another, but
generally it constitutes about 90% of the total mass. This
hypothesis explains the Oat rotational curves of galaxies.
Yet it has its own troubles, in particular, (i) no good model
for the formation of the dark halo is known, and (ii) af-
ter much effort and many proposais, no known form of
matter has yet given a satisfactory model for the massive
halo. (The few recently observed cases of gravitational
microlensing [4] are as yet far from conclusive evidence
for the dark matter explanation. )

The second way is to assume that for galactic distances
Newton's gravity law is no longer valid. This possibility
has also been the subject of some discussions [5—8]. In
particular, it was shown [9] that a modified gravitational
potential of the form

—GM
[1 + ue "i"'j,

r(1 + n)

where a = —0.9, ro = 30 kpc can explain flat rotational
curves for most of the galaxies. The potential (1) dif-
fers from the usual one by an extra exponential term. For
the solar system this term equals 1 with high accuracy
and (1) reduces to the standard form p = GM/r but —for

distances significantly greater than 30 kpc the exponen-
tial term vanishes, and we have once again a Newtonian
potential p = —GM/(1 + u)r but now with an approxi-
mately 10 times bigger gravitational constant G/(1 + a),
Besides (1) several other modified gravitational models
were considered in the literature [5]. Most were intro-
duced purely phenomenologically without derivation from
some gravity theory. All of these models and also various
attempts to construct nonrelativistic gravity theories [5]
have the same trouble. They cannot describe the motion
of light without additional assumptions. A description of
light requires a relativistic gravity model.

We investigate the general possibility of constructing
a relativistic gravity theory which can explain galactic
mysteries and other experimental data like the classical
solar system tests [1]. We formulate some very general
postulates about the structure of the theory:

(i) Gravitational phenomena are described by the metric
of space-time g„„and possibly some other set of fields
4A. The theory is invariant under general coordinate
transformations.

(ii) The trajectories of (structureless) massive test
particles and light are timelike and null geodesics of the
metric g~„, respectively.

(iii) The sources for the gravitational fields g„„and WA

are the energy-momentum tensor T„„and some current
JA. For the solar system and galaxies these sources can
be taken in the form T„„=Too = p, J& ——0 in the (u/c)
approximation.

(iv) The theory has a good linear approximation.
(v) Flat space-time g„„=iJ„„= diag( —1, 1, 1, 1) and

+& = W„(WA some constant or almost constant field) can
be considered as the background fiel configuration for
the solar system and galactic scales.

(vi) The theory does not possess any unusual gauge
freedom for the metric field besides general coordinate
invariance. Any gauge freedom for the field WA is fixed

by an appropriate gauge fixing condition.
(vii) The theory is not a higher-derivative theory.
Let us briefiy discuss postulates (i)—(vii). The postu-

lates (i),(ii) are the usual postulates of the so-called metric
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theory of gravity [1]. Postulate (iii), especially the condi-
tion JA = 0, is of crucial importance for our study. First,
it allows us to make definite predictions about the post-
Newtonian approximation of the theory without needing
detailed information about its structure. Second, as we
will see below, it ensures that the theory does not violate
the equivalence principle. The nature of the current J&

may be different; for some models it may be absent ex-
plicitly. In particular, for the Brans-Dicke [1] theory Wz

is the scalar field, and it does not have any corresponding
matter source. However, for the Poincare gauge theory
of gravitation [10] 4& is the space-time torsion, and the
current is the spin tensor of matter which vanishes to a
high approximation since both the solar system and the
galaxies do not contain large amounts of spin-polarized
matter. Postulate (iv) excludes from our considerations all

essentially nonlinear theories for which the linear approxi-
mation is invalid. Postulate (v) means that we neglect
global cosmological effects. Postulate (vi) ensures that
gravitational equations are nondegenerate. The assump-
tion about the absence of extra gauge freedom for the
metric is quite natural since such invariance normally
imposes unphysical constraints on the energy-momentum
tensor of matter fields. Postulate (vii) excludes from our
consideration theories with Green's functions of the form

I/(& —m~)", n ~ 2. These postulates are actually not
too restrictive. For example, they allow a large class of
geometric gravity theories derived from Lagrangians de-
pending on the metric and the connection through the tor-
sion, curvature, and nonmetricity.

We are going to compare the predictions of any gravity
theory which satisfies postulates (i)—(vii) with the experi-
mental data from the solar system and the galaxies. A
key point is that all of these systems are essentially post-
Newtonian slow-motion, weak-gravitational-field systems
[1]. Hence we can consider our theory in the linearized
approximation, and we can use the small post-Newtonian
parameter p = v2 « 1 (we assume c = fi = 1) in order
to solve the gravitational equations approximately (p is
a typical gravitational potential and v a typical velocity
in the system). Observe that GTpp = Gp = O(v ) [1]
and, therefore, the leading corrections for the g„„,'Ii'q
are O(v2). Thus, we can represent our fields in the
form

g„„=g„„+h~„, Vp = 4'„+ Pp, (2)

where h„„,iliA = O(v ). We are interested in computing
only the metric, since the test bodies are not sensitive
to the other fields. It is well known [1] that the first
post-Newtonian correction of the equations of motion of
massive test particles depends on hoo only. This is just the
Newtonian approximation, and —zhoo is the gravitational
potential. But the post-Newtonian equations for light
include both the hoo and h;I„i, k = 1,2, 3 components
of the metric (the gravitational potential alone cannot
describe the motion of light).

P = 28(gcov)

P =M co2 pv

P' = e ~ t'/ ~3 P' = ~ e t'/v3.

here cu„„=B~B„/0 and 8~„= rt„„—~„„. The sub-

scripts 1,2 in the spin 0+ sector label two different kinds
of particles of this type. A similar spin decomposition
exists for the field Pq, but we are not interested in its
detailed contents since the corresponding source J& van-

ishes. Nonzero contribution to the metric for the source
T~ = p can come only from P2 T„„and P, T~„. All
other projectors produce terms which either vanish in the
given approximation or can be eliminated by an appro-
priate choice of coordinate system. In general each spin
sector can contain several different particles. The form of
the linearized equations in the spin 2+ sector is

/Pph„„)/ MppPp Mpi Ppi
M)OP)0 M) )P)

l e ~ ~ ~ ~ ~ ") r

/PpT„„&

where the coefficients M;z are scalar polynomial functions
of the operator 0 = 8 8 (here for simplicity we omit
the superscript 2+ and denote P =—Po, the subscripts
1,2, . . . label different 2+ modes). The determinant of the
matrix M;J has the form P( —m2)q. The constants mp

play the role of "masses" for the propagating linearized
modes of our alternative gravity theory. Because of the
orthogonality and completeness properties of the spin
projectors the solution of Eqs. (3) can be obtained merely

by calculating the inverse matrix N;k = M;k'. We are
interested to know N only; its general form is Noo =
g o.„/( —m2). Finally we have to replace all operators
1/(C7 —m ) by 1/(6 —m~) which leads to Yukawa
exponential potentials. The analysis of the spin 0+ sector
is completely analogous. Hence, we obtain a general form
for the metric

The h„„,P& can be obtained from the linearized equa-
tions of the theory. The invertible linear operator D of
these equations is constructed with the help of g„„B„,
and 0'~. At this stage we work with the weak field rela-
tivistic approximation. In the end we obtain the required
post-Newtonian approximation by dropping all terms with
time derivatives 80 and replacing 0 by A. We assume
that 27 does not contain terms of the form %&8 . Such
terms usually violate spatial isotropy, verified experimen-
tally with rather high accuracy [1]. Now we can use the

spin projection operators [11] and decompose our equa-
tions on the independent spin sectors. In general the
field h~„can contain contributions of 4 different kinds of
particles of spin 2+, 1,0+, 0+. The corresponding pro-
jectors read
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n2

goo = —1 + 2 (op + rp)U + g opUp +
n2+ n0

q=n2+1

&oo
g;g = B;~ 1 + 2 l

——
vp)U +

& 2

n2 " U„—
p=l

n2+n0

q=n2+1
(4)

correspond to the massless and massive modes with mass
m~. Now all information about a particular gravity theory
is packed into several constants r;, o ~, m~.

We can compare the metric (4) with the standard metric
of the parametrized post-Newtonian (PPN) formalism in
the same O(u2) approximation [1]:

gpp = —1+ 2U, g;z ——8;z(1 + 2yU). (6)

Here the coefficient of U in goo is fixed by the Newto-
nian limit, and the experimental value for y = 1 ~ 10
comes from light deflection and retardation experiments
in the solar system [1]. The only essential difference be-
tween (4) and (6) is that the standard PPN formalism does
not take into account a possible contribution from massive
modes. Of course, the influence of massive exponential
potentials on the predictions of the gravity model depends
on the concrete values of the masses m„. If the mass of
the mode is large enough, i.e., such that 1/m~ is signifi-
cantly less than 1 cm, then the contribution of U~ cannot
be observed in gravity experiments, and our metric re-
duces effectively to (6). On the other hand, if 1/m~ is
larger than the typical size of a galaxy then U~ = U for
galactic and shorter distances, and we are left once again
with the metric (6). In principle 1/m„could be about
the size of the Earth or the solar system but in this case
experimental data impose very strong restrictions on the
magnitude of the constants o„,r„[12]. For example, if
1/m„= 10'3 cm then o.~, r„( 10 s.

Therefore, we have hopes to explain the dynamics of
galaxies if 1/m„has an intermediate value significantly
larger than the size of the solar system but not greater
than the typical size of a galaxy [compare with (1)]. For
our purposes it is sufficient to consider the simple case
with two massive particles of spins 2+ and 0+ with ap-
proximately equal masses m& = m2 = 10 eV. Thus,
we have (4) with four unknown constants o.o, ro, o.~, rp.
The experimental data impose constraints on these param-

Here the constants op 7 p depend on the parameters of
the concrete model and/or the constant field WA. The
constants sr~ and ~~ represent the contributions of the
spin 2+ and spin 0+ modes, respectively. The Newtonian
potential U and exponentia1 potentials Up,

p/ p /e mp Ix xU=G, dx', U~=G „, dx',

o+ rp=10, 1

2oo —ro = 10 (8)

Here the second conditions follow from gravitational
lensing, since it is known [2] that the observed lensing
is in conformity with the predictions of Einstein's gravity
with dark matter. Thus, we have once again an approxi-
mately 10 times stronger effective coupling constant for
light. Solving (7),(8) one has

40
CTp = 3'

10
7p 3' C7j 12, 2=3

Any gravity model with the parameters (9) should be
in good correspondence with experimental data in the
solar system and should explain the behavior of stars
and light in galaxies with reasonable accuracy. Probably
if we include more spin 0+ and 2+ particles of various
masses we could fit more details of the galactic rotation
curves [8]. This hypothetical model is not so simple: the
gravity theory should include, besides the usual graviton,
at least two extra massive very light particles [13]. The
most serious trouble with such a theory comes from
the negative sign of 7.p and sr~. In accordance with a
general theorem [14] the sign of these constants must
be positive for even spin fields and negative for odd
spin fields. A wrong sign results in a propagating mode
carrying negative energy; this is considered unacceptable
in a theory. There is still a small possibility of escaping
this problem. It has been suggested that if the theory
contains several particles with the same spin, then the
conditions on the parameters might be weakened [8]. In
our opinion the possibility of successfully matching the
galactic rotation curves while avoiding negative energy
modes seems remote.

eters. In the solar system U] = U2 = U, and we have

op + 7 p + cJ] + 'T2 = 1,
1

—,(~0 + ~i) —(ro + r2) = 1,

where the first condition ensures the correct Newtonian
limit, while the second follows from expenments with
light. Now let us consider distances larger than 30 kpc.
For these distances U~ = U2 = 0. As was mentioned
above in order to reproduce the flat rotational curves of
galaxies without dark matter as far as is known we only
need the gravitational interaction to be approximately 10
times stronger for large distances
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On the other hand, a negative sign for the coupling
constant is natural for odd spin particles; initially it was
suggested that the exponential term in (1) is mediated

by a spin 1 vector particle [9]. In our scheme one can
reproduce such a contribution if and only if JA + 0. In
particular, it was suggested that JA may be proportional
to baryonic charge [15]. However, the baryonic charge to
mass ratio varies from one body to another. Therefore,
such an interaction is no longer universal and violates
the weak equivalence principle [16] which has been
verified experimentally to a very high accuracy [1].
Now the importance and fundamental nature of postulate
(iii) becomes clear. It ensures the universality of the
gravitational interaction. All models which satisfy this
condition should not have trouble with the equivalence
principle, at least on the modern experimental level.

We have compared our model only with part of the
available experimental data. Even if one overlooks the
problem with the wrong sign of the coupling constants,
the model must describe correctly, in addition to the al-
ready considered effects, the perihelion shift of Mercury,
the energy loss of the binary pulsar, and cosmological ob-
servations. Comparison with these data cannot be per-
formed with the help of linearized equations and requires
a more detailed consideration for each particular gravity
theory. Of course, such comparison probably results in
additional, perhaps severe, restrictions on the theory un-

der consideration (see, e.g., [17] which discusses cosmo-
logical restrictions).

Although our scheme covers a large class of the theo-
ries, yet we cannot exclude the possibility of constructing
a model with the desired properties which violates one of
our postulates. We want to mention briefly some possi-
bilities which have been proposed.

(1) It has been shown [18] that a cosmological constant
A = 10 s2 cm 2 is able to explain the flat rotational
curves of galaxies. This value of A is 10 times larger
than the cosmologically acceptable limit.

(2) The consideration of quantum corrections to the
Newtonian potential may result in some additional loga-
rithmic long range terms [19]. The applicability of these
results to galactic distances is not obvious.

(3) A quadratic in curvature Lagrangian can also
produce modified gravitational potentials with extra long
range terms [7]. This model has higher derivatives
equations and requires a traceless energy-momentum
tensor.

(4) It is possible to construct an essentially nonlinear
theory with a nonquadratic kinetic term in the Lagrangian.
This model explains the dynamics of galaxies due to the
nonlinear nature of the equations in the regime of small
accelerations [5,16). It was observed that such a theory
may have troubles with faster-than-light waves.

Although all these models explain the rotation of
galaxies, they have their own weak points; moreover, they

must be capable of predicting correctly other gravitational
effects. Therefore we conclude that the possibility of
explaining galactic mysteries with the help of a modified
gravity theory looks quite improbable.
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