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Stochastic Process with Ultraslow Convergence to a Gaussian: The Truncated Levy Fhght
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We introduce a class of stochastic process, the truncated Levy flight (TLF), in which the arbitrarily

large steps of a Levy flight are eliminated. %e find that the convergence of the sum of n independent
TLFs to a Gaussian process can require a remarkably large value of n —typically n = 104 in contrast
to n = 10 for common distributions. %e find a well-defined crossover between a Levy and a Gaussian
regime, and that the crossover carries information about the relevant parameters of the underlying
stochastic process.
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In physical systems, the variance of any stationary
processes isltnite, so that a Gaussian behavior is expected
in the absence of long range correlations. Gaussian
behavior arises from the central limit theorem (CLT),
which is fundamental to statistical mechanics [1], and
states that the sum

n

7n = xi
i=1

of n stochastic variables [x) that are statistically inde-
pendent, identically distributed, and with a finite variance
converges when n .- ~ to a normal (Gaussian) stochas-
tic process [2]. On the other hand, Levy flights [3—10]
which have infinite variance —or a related process called
Levy walks [11,12]—have been observed experimentally
in fiuid dynamics [13] and polymers [14] and have been
used to describe subrecoil laser cooling [15], turbulent
fluids [11,16], very stiff polymers [17], and the spectral
random walk of a single molecule embedded in a solid
[18,19].

In these physical systems, an unavoidable cutoff is
always present. For example, in the case of a single
molecule embedded in a solid [18,19], due to the minimal

length between the molecule and the nearest two-level
systems, a cutoff is present in the distribution of the

jumps of the resonance frequency The j. ump of the

frequency is induced by the thermal transitions occurring
in the surrounding two-level systems. A second example
is turbulence: In numerical simulations performed using
Levy walks in a Boltzmann lattice gas, the jumps of the
particles are limited by the finite size of the simulated
system [16].

Levy flights have mathematical properties that discour-
age a physical approach: They have (i) infinite variance,
and (ii) an analytical form is known only for few spe-
cial cases. Here we show that the paradox of infinite
variance may be resolved by introducing a variant of the
Levy flight (not requiring the hypothesis of a spatiotem-
poral coupling [12]), which we term the truncated Levy
flight (TLF). A TLF has finite variance. We show that
the convergence of a sum of TLFs to a normal process

can be so slow that a huge number (n ~ 104) of indepen-
dent events (or time intervals) may be necessary to ensure
convergence to a Gaussian stochastic process. Thus, in

systems with finite variance, we can observe a sum of a
huge number of independent stochastic variables which
converges to a stochastic process characterized by a prob-
ability distribution that differs from a Levy stable distri-
bution only in the very far wings. From the point of view
of an experimental study, we find an apparent failure of
the CLT in that a stochastic process with finite variance
is apparently not converging to the expected Gaussian be-
havior (Fig. 1).

We define a TLF to be a stochastic process {x]
characterized by the following probability distribution:

0,
T(x) —= - ciL(x),

0,

x « I„
—t'~x«dt,
x ~ —I,

(2)

where
+

L(x) = — exp( —yq ) cos(qx) dq
7T 0

is the symmetrical Levy stable distribution of index
ct (0 ( u ~ 2) and scale factor y (y & 0), ci is a
normalizing constant, and 1 is the cutoff length [20]. For
the sake of simplicity, we set y = 1.

We investigate the probability distribution P(z„) of the
stochastic process of Eq. (1) when [x) is a TLF, i.e., a
stochastic process with probability distribution given by
Eq. (2). Of particular interest is the probability of return

P(z„= 0), which we study as a function of n, i, and a.
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FIG. 1. Schematic illustration of our results for the TLF.
Shown is the crossover found between Levy flight behavior
for small n and Gaussian behavior for large n. The crossover
value n increases rapidly with the cutoff length /.
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For small values of n, P(z„= 0) takes a value very
close to the one expected for a Levy stable process,

I .g.g ~t4. l JL&LJ aha L J.-LJL4 J aa~J Ji JQiaula-- —. .MaLJ. . 4JJtgJJ~~aa

For large values of n, P(z„= 0) assumes the value
predicted for a normal process,

P(z„=O) =N(z. =0) = „,, (5)
1

2n'op u, 1 n'~2

-100

-200

where o.p(u, i) is the standard deviation of the TLF
stochastic process {x}.

In the interval 1 ~ n & 2, we can calculate the
crossover between the two regimes by equating Eqs. (4)
and (5), and writing explicitly the dependence of o.p
on u and I. The analytical form of the variance of a
TLF is known only for e = 1. An approximate relation
for any value of 1 & u & 2 and I can be found if one
uses a series expansion [21] of the symmetrical Levy
distribution valid in the interval 1 & u & 2
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where

1 ~ (—1)k I'(uk + 1) . I'kn. u&

k~ z~k+'
& 2 J

R(z) = O(z
—.""-').
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By using the leading term of the series, we find that the
standard deviation of a TLF is approximately given by
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2I (1 + u) sin(n. u/2) (z )(z

n. (2 —u)
(7) 2000

Using Eqs. (7), (5), and (4) we find

nx =Al (8a)
1000—

where

—2u/(u —2)

21'(1/u)[I'(1 + u) sin(m. u/2)/(2 —u)j'~
(8b)

From Eq. (8a), we see that, for a given value of I,
the number of variables required to see the crossover
increases with the value of n.

To quantify the "distance" between the TLF and the
Gaussian stochastic processes, we introduce a quantity

T(0)'="'"N(O) (9)

where T(0) is the TLF probability of return, and N, (z„=
0) =—N(z„= 0)n'~z is the scaled probability of return for
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FIG. 2. Numerical simulations of the stochastic variable z„
defined by Eq. (1). The stochastic variables [x}are also shown.
The x; variables are TLFs of index a = 1.2 and scale factor
y = 1. The cutoff length I is given by (a) 1 = 10, (b) 1 = 100,
and (c) I = 1000. For values of I closer to y [e.g. , the
case I = 10, of (a)], large jumps of size greater than 10 are
completely forbidden and the profile of the z„random walk
resembles Brownian motion. By increasing I, large jumps
occur [(b)]. Finally, if I && y [e.g., the case I = 1000, of (c)],
then the profile strongly resembles the profile of a Levy flight
of the same index u.

2947



VOLUME 73, NUMBER 22 PHYSICAL REVIEW LETTERS 28 NOVEMBER 1994

the associated normal process. We find

2I'(1/a) 15 = logio log
&Cl 2

2 Cl+
2

log, o I .

& I (1 + a) sin(n. a/2) l
!

2 —a )
(1o)

For a selected value of I, 5 is maximal for a = 1 and is
equal to 0 for a = 2; this means that the distance between
the two asymptotic regimes decreases as n increases.

Next we test our theoretical predictions by performing
numerical simulations of the TLF stochastic process [22].
To generate a Levy stable stochastic process of index o
and scale factor y = 1, we use the algorithm of Ref. [23].

In Figs. 2(a)—2(c), we show three different realizations
of the stochastic process z„obtained by generating TLF
characterized by a = 1.2 and / = 10, 100, 1000, respec-
tively. We also plot the values of the x variables used to
obtain each realization. From Eq. (2), it follows that these
values are bounded between —I and +l. By increasing I,
the features of the random walk performed by z„range
from those of Brownian motion [Fig. 2(a)] to those of a

Levy flight of index a [Fig. 2(c)].
In Fig. 3, we show the probability of return obtained by

simulating the z„process when o. = 1.2 and I = 10, 100,
1000. We also show the asymptotic behaviors predicted
by using Eq. (4) (solid line) and Eq. (5) (dotted lines).
We clearly see the crossover between the two regimes, as
predicted by Eqs. (4) and (5).
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We systematically studied the dependence of n& and
b, on the parameters a and l [22]. The simulations are
compared with the theoretical predictions of Eqs. (Sa) and

(10) in Figs. 4(a) and 4(b), respectively; we find striking
agreement.

In conclusion, theoretical predictions and numerical
simulations demonstrate the existence of values of the
control parameters o. and I for which the sum of TLFs
requires a huge number of independent variables to
converge to a normal process [24]. This implies that the
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FIG. 3. Numerical simulation of the probability of return
P(z„= 0), where z„ is a sum of TLFs of index a = 1.2. Three
different values of the cutoff length I (l = 10, 100, 1000) are
shown. The small-n regime of Eq. (4) is shown as a solid
line, while the large-n asymptotic regime of (5) is shown as
three dotted lines, one for each value of I. The values of
the standard deviation of the TLF, oo(a, I), used to draw the
dotted lines have been calculated numerically. The crossover
nx between the two asymptotic regimes increases dramatically
when I increases. For the case l = 1000, a behavior very
close to the one predicted for a Levy flight is observed up
to n = 1000.

FIG. 4. (a) Minimum value of n, n, required to observe a
crossover between the Levy and Gaussian regimes. Symbols
refer to the values of nx we find in, numerical simulations
of P(z = 0) for a range of indices a and cutoff lengths
l. Shown as dotted lines are the theoretical predictions of
Eq. (8a) for a = 1.0, 1.2, 1.4, 1.6, 'and 1.8 from bottom to top.
(b) "Distance" 5 between T(0) and IV, (0), the scaled probability
of return of the associated normal process [see (9)]. Symbols
are the values of n& found in numerical simulations of z„
characterized by different values of the control parameters n
and I. The theoretical predictions of Eq. (10) are also shown
as dotted lines, each corresponding to a value of l: from bottom
to top, / = 10, 30, 100, 300, and 1000.
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CLT correctly predicts the final distribution only if one
considers the sum of an incredibly large number of TLFs.
For n (& nx, a violation of the CLT is observed. When
this violation occurs, the sum of TLFs maintains statistical
properties for a large value of n that are effectively
indistinguishable from the statistical properties of Levy
fiights (except for the most rare events). Because of
this "long-time" violation of the CLT, we expect that
a number of physical phenomena may show statistical
properties very close to those expected for Levy flights for
long intervals of the control variables, even in the absence
of a spatiotemporal memory.

Our study also shows that a clear crossover between
Levy and Gaussian regimes is observable by investigating
the probability of return of a stochastic process with finite
variance, which shows a Levy-like probability distribution
for a long (but finite) interval of independent variables n.
Since the crossover is a function of the index u and cutoff
length l, our method allows the parameters u and l to be
determined from experimental data: e.g., by measuring the
index a (inverse of the absolute value of the slope fitting
the Levy regime in Fig. 3) and the crossover n&&, one can
determine l by using Eq. (8a). The knowledge of n and
l in physical systems could be useful to fully characterize
the analyzed process
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