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Two Reasons Why the Davydov Soliton May Be Thermally Stable After All
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Davydov has proposed a mechanism for energy transfer in proteins, according to which the energy
liberated in an enzymatic reaction can be stored and transported in the form of a soliton. In recent
years a debate has been going on concerning the thermal stability of the Davydov soliton. Here it is
shown, first, that the two-quantum state is visibly more stable than the one-quantum state, and, second,
that the usual Langevin dynamics, whereby the thermal lifetime of the Davydov soliton is estimated,
must be viewed as underestimating, possibly very strongly, the soliton lifetime.

PACS numbers: 87.22.As, 05.40.+j, 71.38.+i

The problem of the mechanism of energy transfer
in proteins is a long-standing problem [1]. A very
well defined model was first proposed by Davydov and
Kislukha [2). In Davydov's model the energy liberated in
the hydrolysis of Adenosinetriphosphate (ATP) leads to
the creation of amide I vibrations in the hydrogen-bonded
spines of protein n helices. The interaction of the amide I
vibration with the hydrogen bonds leads to a nonlinear
interaction and soliton states. This is at least the picture at
low temperatures, which even fully quantum mechanical
simulations confirm [3,4]. The Hamiltonian H is

H = Hqp + Hph + Hillt (1)
where Hqp is the quasiparticle Hamiltonian, associ-
ated with the amide I vibration, Hph is the phonon
Hamiltonian, and H;„, is the interaction Hamiltonian. The
quasiparticle Hamiltonian Hqp is

Hqz = g [ea„a„—J(a„a„ t + a„a„+~)], (2)
n= 1I,N

where e is the amide I energy, —J is the dipole-dipole
interaction energy between neighboring sites, and a„(a„)
is the creation (annihilation) operator for an amide I
excitation in site n. The phonon Hamiltonian Hph is

Hph = g " + —~(tt„—tt„(), (3)
M 2

where ~„ is the displacement operator for site n, P„ is the
momentum operator of site n, M is the mass of each site,
and z is the elasticity constant of the lattice. Finally, the
interaction Hamiltonian H;„, is

Hint J &n+] +n an an + g &n &n —l an an
n=l, N

(4)

where g+ (g ) is an anharmonic parameter related to the
coupling between the amide I excitation.

At higher temperatures, such as occur in vivo, the sta-
bility and lifetime of the soliton states is still an open
question. A full review of the area can be found in [5],
but, in short, there are two main issues. First, the exact

wave function of the fully quantum Davydov model is not
known. Different wave functions have been used to de-
scribe the states of the fully quantum mechanical system
[6]. Although some of these wave functions lead to exact
quantum states and exact quantum dynamics in the limit
J = 0, they also share a problem with the original Davy-
dov wave function, namely, that the degree of approxi-
mation involved when J 4 0 is not known. The second
issue is the lifetime of the Davydov soliton at biologi-
cal temperatures. The first Langevin simulations, which
implicitly assume that the lattice part of the Hamiltonian
is classical, suggested that the soliton lifetime is only a
few picoseconds, too short to be biologically relevant [7].
A thorough study in terms of parameter values, different
types of disorder, different thermalization schemes, dif-
ferent wave functions, and different associated dynamics
leads to a very complex picture [8]. On the other hand,
fully quantum mechanical calculations, using perturbation
theory, lead to subpicosecond lifetimes for the original
Davydov solution [9]. The Davydov solution, however, is
not a true wave function of the system, and thus this does
not eliminate the possibility of other, true wave functions
having longer lifetimes.

While the study of the thermal behavior of the fully
quantum Davydov system is an extremely difficult prob-
lem, the approach implicit in the Langevin simulations that
the lattice is classical presents much fewer mathematical
and computational difficulties. Here only the latter case,
designated as the semiclassical Davydov system, shall be
studied. This means that the displacements and momenta
of the lattice cease to be operators and are instead real vari-
ables. In contrast with the fully quantum mechanical sys-
tem, the exact wave function of the semiclassical system
is known [10,11] and exact minimum one-quantum states
have been calculated [11]. Since the hydrolysis of ATP
liberates enough energy to create two quanta of amide I vi-
bration, here exact two-quantum states will be determined
and their energies and stability compared with that of the
one-quantum states. Also, the approximations involved in
Langevin dynamics of mixed quantum and classical sys-
tems will be illustrated. This complements previous work
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(5)
n, m= 1,N

by other authors [12,13]. It will be shown that exact ther-

mal averages lead to more stable soliton solutions. To-
gether with the greater stability of two-quantum states,
these constitute two reasons why the Davydov soliton may
be stable at biological temperatures.

Exact two-quantum states of the semiclassical Davydov
system are

IP(r)) = g p„({ul),{p~),r)a„a 10),

Ch
O
L
lL
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where cp„ is the probability amplitude matrix for an

amide I excitation in sites n, m. Other authors have also
considered two-quantum states, also in the semiclassical
case [14], but their wave function is not exact. Indeed,
they considered the following form [15]:

-2 0.02

12 18 24 30

IW(r)) = g v. ({uI),{pl),r)a.' 10)
n=1,N

0.01

which is only equivalent to (5) if q&„= p„p, which is
generally not the case. The dynamics of wave packets
as described by (5) is found by integrating a system
of the order of N~ coupled differential equations, while

(6) leads to a system of order N. Exact multiquanta
states at finite temperatures have also been considered for
the full quantum mechanical model [4]. Bound polaron
states are found at low temperatures, which dissociate at
higher temperatures. However, these studies describe the
behavior at thermal equilibrium and cannot be used to
make inferences about thermal lifetimes.

As for one-quantum states [11], exact minimum
two-quantum states can be found by averaging the
Hamiltonian (1)—(4) over the state (5) and minimizing
the resulting functional with respect to the displacements
uI, the momenta pI, and the probability amplitudes

In Fig. 1 the thermal stability of the minimum
two-quantum state is compared with that of the mini-

mum one-quantum state, both obtained for the values
of the parameters used in [7], i.e., J = 1.549 X 10 22 J,
~ = 13 N/m, M = 1.907 X 10 kg, and g+ = g
62 x 10 ' N. Inserting each state in the correspond-
ing Langevin equation, with a target temperature of
T = 310 K, the average state over the first 50 ps is
calculated. The average state is defined by the average
probability distribution for the excitation and by the
average displacement difference versus site n. These
are calculated by summing over the states at each time
step, after having located, for each state, the maximum of
the probability distribution and translated this maximum
to the middle of the chain and performing exactly the
same rotation with the displacement differences. The
figure shows that the two-quantum state is visibly more
stable that the one-quantum state. Although the period
considered, of 50 ps, is an order of magnitude greater
than the few picoseconds estimated for the soliton
lifetime, in the original Langevin simulations [7], the
difference in stability between the two states, as seen
in Fig. 1, is, per se, too small for a conclusion that the
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FIG. 1. Thermodynamic average state (see text) for the two-
quantum state (solid line) and the one-quantum state (dashed
line). (a) The average probability distribution of the excitation
per site and (b) the average displacement difference per site
N =30.

where (( .)) stands for thermal averaging, P = 1/kT, k

being Boltzmann constant and T the absolute temperature;
the Nose thermalization scheme and Langevin simulations

[12] lead to

J2~ „„;,, h„,{dp„)f{du„)e (P 1A1$)

f,„„„...p„„,{d~„)f{du„)e P'' " ')

This has been shown numerically for Langevin simu-
lations in [17] and misled the present author into the
conclusion that Langevin simulations do reproduce the

exact two-quantum states of Davydov system are stable
at biological temperatures. However, the next results
show that traditional Langevin simulations, as have been
performed here and in [14], lead to an underestimation
of the soliton lifetimes. Indeed, it has been shown that
the Nose thermalization scheme [16], when applied to
mixed quantum and classical systems, leads to a classical
treatment of the quantum part of the system, as well [13].
I.e., while the exact thermal average, for one-quantum
states, of a quantum variable A({u„), {a„))is given by

J{du„)Tr[e ~HA]

J{du„)Tr[e PH j
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correct thermal behavior of the semiclassical Davydov
system. On the contrary, comparison of the two types
of averages shows the approximations involved in the tra-
ditional Langevin dynamics. Expressions (7) and (8) can
be evaluated by Monte Carlo methods. However, calcu-
lating (7) means solving an eigenvalue problem in each
successful Monte Carlo step which is extremely time con-
suming computationally, especially as the number of sites
N is relatively large. Since the point is equally made for
any number of sites, here the smallest number N = 2 is
used. In this case (7) reduces to a one-dimensional inte-
gration which can easily be performed numerically [18].

As a measure of localization, the variable p = a& a~-
a2a2 is chosen. This variable is 0 for delocalized states
and 1 for completely localized states. The thermodynamic
average is obtained by substituting p for A in expressions
(7) and (8). As was shown previously, for a dimer, the
thermal behavior of p is only dependent on the quantity
v = Jtr/g2 and on P [18]. The exact thermodynamic
average ((p)) versus v and ln(P) is displayed in Fig. 2(a).
As observed in [18], ((p)) shows two possible effects of
thermal agitation, for values of v, for which at low tem-
perature the states tend to be delocalized. In this case,
raising the temperature leads first to a strengthening of
the localized states, which is eliminated by further in-
creases in temperature. The overall result is a peak in the
((p)) as the temperature increases. Figure 2(b) shows the
corresponding thermodynamic average of p as obtained
from expression (8) and, consequently, Langevin dynam-
ics. At low temperatures, for which the minimum en-
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FIG. 2. Thermodynamic average localization ((p)) (see text)
versus v and In(P) for (a) exact average and (b) Langevin
average.

ergy eigenstates are important, (8) is a relatively good ap-
proximation. On the other hand, as temperature increases,
average (8) becomes increasingly incorrect. More specif-
ically, the peak in localization versus temperature is very
much attenuated and, moreover, the importance of local-
ized states at finite temperatures is generally underesti-
mated. For the values of the parameters J,g, ~ that have
been used in previous Langevin simulations [7], v = 0.52
and lnP = —2.67 and expression (8) gives ((p)) = 0.06,
while the exact expression (7) leads to a value approxi-
mately 3 times larger.

In Fig. 2 only an equilibrium measure of the localiza-
tion is calculated and thus it cannot be used to estimate the
lifetimes of the Davydov soliton. However, the results in
this paper do call for a reinterpretation of the conclusions
drawn, using the Langevin method. Indeed, Figs. 1 and 2
suggest Davydov solitons to be more stable than hereto-
fore indicated by Langevin simulations of single amide I
quanta. %hile precise estimates of the soliton lifetimes
require the development of more correct ways of simu-
lating thermal effects in a dynamical context in mixed
quantum and classical systems [13], these results indicate
that the Davydov soliton remains a possible candidate for
a mechanism for energy transfer in biological systems.
As stated above, the formalism used here assumes that the
lattice is classical. Another important question to be ad-
dressed is the validity of this semiclassical approximation
for the Davydov system, a subject that is currently under
investigation.
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