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Density Functional Theory of Laser-Induced Freezing in Colloidal Suspensions

J. Chakrabarti, H. R. Krishnamurthy, * and A. K. Sood*
Department of Physics, Indian Institute of Science, Bangalore 560 OI2, India

(Received 15 October 1993)

We reexamine the density functional theory of laser-induced freezing, i.e., the freezing of a colloidal
liquid into crystalline order in the presence of an external periodic modulating potential V, with its
wave vectors tuned to the ordering wave vector in the liquid phase. We show definitively that the
initial first order freezing transition (at small V, ) changes to a continuous one (at large V, ) via a
tricritical point provided the modulation wave vectors are suitably chosen. We also present predictions
for the parameter values of the tricritical points for a realistic colloidal system.

PACS numbers: 82.70.Dd, 64.70.Dv

Several years ago Chowdhury, Ackerson, and Clark
[1] demonstrated the very interesting phenomenon of
"laser induced freezing" in a 2D suspension of strongly
interacting colloidal particles. Here the colloidal particles
were subject to a 1D periodic modulating potential V,
induced (via their polarizabilities) by a standing wave
pattern of interfering laser fields. The wave vector of
the modulation was tuned to be at the first peak in
the direct correlation function (DCF) of the colloidal
liquid in the absence of V, . Using light scattering
experiments, Chowdhury and co-workers [1] then showed
that the colloidal system responds to V, by forming a
2D (modulated) crystalline phase, with predominantly
hexagonal order similar to that of the colloidal crystal
obtained in the absence of V, .

Chowdhury and co-workers [1] also analyzed this
phenomenon theoretically in terms of a simple Landau-
Alexander-McTague [2] theory. Using this, they con-
cluded that the transition from the 1D modulated liquid
phase (i.e., the liquid phase with weak modulation in-
duced by V,) to the 2D (modulated) crystalline phase
can be made continuous for sufficiently large laser fields.
This, if true, would make for a fascinating critical phe-
nomenon. However, while later studies using direct
macroscopic observations [3] and Monte Carlo simula-
tions [4] have confirmed the existence of laser induced
freezing, their conclusions regarding the nature of the
transition between the modulated liquid and the crystal
have not been definitive.

In the past two decades the density functional the-
ory (DFT) of freezing pioneered by Ramakrishnan and
Yussouff [5] has been used extensively [6] to study liquid-
solid transitions. The DFT, unlike the phenomenological
Landau theories, is capable of predicting [7] the phase dia-
grams of experimental colloidal systems [8] without ad-
justable parameters. It is of obvious interest to ask what
DFT has to say regarding the phenomenon of laser in-
duced freezing. The only work that we know of in this
direction is that of Xu and Baus [9]. They studied the
DFT of a 3D hard sphere system with its DCF being mod-
eled by the Percus-Yevick DCF, in the presence of a 3D

simple-cubic modulating potential V, commensurate with
the fcc lattice to which the system freezes in the absence
of V, . However, their results seemed to indicate that the
Quid to crystal transition remains first order no matter how
large V, is, in contradiction to the results of Ref. [1].

In this paper we reexamine the DFT for laser induced
freezing, i.e., for a model colloidal system subject to an
external periodic modulating potential V, with a lower
symmetry than that of the crystalline phase of that
colloid We .show definitively that, with increasing V„
the transition from the modulated liquid to the modulated
crystalline phase changes from first order to continuous
via a tricritical point (TCP) provided certain conditions,
stated below, are satisfted by the wave vectors of the
modulating potential. We reestablish the conclusions of
[1],but liberate them from the limitations of the Landau
theory [1,2] (which, as we show, has no stable crystalline
phase for large V, ). Furthermore, we apply our theory
to real colloidal systems and predict the parameter ranges
for which they exhibit such continuous liquid crystal
transitions.

In order to understand the qualitative features of our
DFT of real colloids, it is useful to consider first the
simplest version of DFT, for an incompressible 2D liquid,
which when V, = 0 freezes into a triangular lattice
[1,10] with its six smallest reciprocal lattice vectors
(RLV) {g; }= (0, ~1)qp, (~~3/2, 4-1/2)qp. Here qp, as
is known from DFT, corresponds to the first peak of the
liquid DCF c 2)(q). We take V, to be 1D modulated,
with wave vectors {g; }= (0, ~1)qp from this set {g;
The order parameters in the simplest DFT are the Fourier
components, with wave vectors {g; }, of the molecular(o)

field g(r) —= ln[p(r)/pp], where p(r) is the local density
in the modulated liquid or crystal [5,6, 11] and pp is the
density of the liquid. From symmetry considerations it
follows that for the crystal with V„ the order parameters
for the RLV set {g; } will have one value, say,

(f)

and those for the rest of the RLV's in the smallest set
{g; }[=—{g; }—{g; }],another value, say, gz. Let c&
-(~) -(o) -(f) (2)

ppc(2 (qp). According to density functional theory, the
excess free-energy cost (relative to the liquid) of creating
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these order parameters is given (in the incompressible
limit) by [5,6, 11]

2
nf gf + nd$4 nf gf

(2) (2)
2c] c(

Here (Ii —= vo
' f"' d r exp[gt(bt(r) + gd@d(r)], where

Pt(r) —= QJ exp(ig~ r) and Pd(r) = gi exp(igI . r),
nt. and nd are the number of wave vectors in the set [g; }(f)

-(d)
and (g; }, respectively, and the integration is over a unit
cell of volume vo of the (modulated) crystal. This free
energy [12] is to be minimized in the space of the order

parameters for a given —PV, and ci to find the phase
(2)

diagram. We do this by solving numerically the two
self-consistency equations obtainable from (1) by setting
c3F BF = 0. In this way we obtain the phase diagram

of Fig. 1, which has two phases: (I) The modulated
liquid with $I + 0 but gd = 0; this goes continuously to
the ordinary liquid phase with gI = gd ——0 as V, 0.
(2) The (modulated) crystalline phase with gf 4 $d 4 0;
as V, 0, this goes into the ordinary crystalline phase
with gi = $d 4 0. As is known [10], at V, = 0, the
liquid crystal transition is first order and takes place
at c, = 0.857 (which corresponds to the first peak height(2)

of the liquid structure factor S,„=7.14). When V, is
turned on, the transition remains first order, but moves
to smaller values of c&, as indicated by the solid line

(2)

in Fig. 1. Thus V, facilitates the liquid-crystal transition,
which is the phenomenon of laser induced freezing. This
transition is characterized by a discontinuous change
in gt as well as by a discontinuous development of

However, the jumps in gd and gy decrease with

increasing V, and finally vanish at the TCP given by

—PV, = 0.106 and c, = 0.748. Thereafter, one has a
i

)

continuous transition from the modulated liquid to the
(modulated) crystalhne phase across the dashed line

( i)
in Fig l.. Illustrative behavior of $, and ~d as
increases for two fixed values of —P V, (0.015 and 0.15)
characterizing the two types of transition is shown in

Figs. 2(a) and 2(b).
Qualitatively similar results arise in a similarly sim-

plified DFT in 3D, if we take a V, which is 2 dimen-
sional. Here, when V, = 0, the liquid freezes [5,6] at

ci = 0.7 (5 „=3.3) into a bcc crystal with the 12(2)

RLV's [g; }= (~1, ~1,0)qo/+2, (0, ~1, ~ l)qo/~2, and
(~1,0, ~1)qo/ j2. When a 2D modulation V, character-

ized by the four wave vectors [g; }=- (~1, ~1,0)qo/v2
-{f)

is turned on, once again the first-order transition from the
modulated liquid to the (modulated) crystal changes into
a continuous transition in a way similar to that shown in

Fig. 1, at a TCP given by —P V, = 0.22 and c, = 0.55.(2)

We can establish a general criterion which the wave

vector set (g; }characterizing V, and its complementary
-(f)

set (g; } must satisfy, in order that the (modulated)
liquid crystaI transition changes from first order to
a continuous one as V, increases. The criterion is as
follows:

~ I[d]
An odd combination of vectors of (g;

(f}4 any integer combination of the vectors of (g;

(2)

For, if condition (2) is satisfied, it can be verified
easily by expanding the ln (Ii term in (1) that the Landau
expansion for pF in powers of gd, given gt 4 0 (with

g& treated nonperturbatively), has only even powers of
gd, the coefficients, which we can compute numerically,

are functions of —pV, and ci . As ci and —PV,
(2) (2)

increase, the coefficient of the second-order term in this
Landau expansion, T2, changes sign and becomes negative,
leading to an instability with respect to the formation
of gd. In the region of the parameter space where the
fourth-order coefficient, T4, is positive, this leads to a
continuous transition. However, if there is also a region of
parameter space where T4 is negative (but T6 is positive),
the continuous transition is preempted by a first-order
transition. The TCP thus arises when both T2 and T4
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FIG I. DFT phase diagram of a (incompressible) 2D system
subjected to ID modulation, showing the first-order (solid
Ijne) and continuous (dashed line) modulated liquid crys«i
transitions. These are separated by the tricritical point (),
which is the intersection of the T2 = 0 line and T4 = 0 line
(see text). Inset: T, = 0 lines of the truncated Landau theories
(see text) and that of the DFT. The TCP's are marked by +
(fourth-order truncation), + (8th and 12th order truncations),
and x (full DFT).
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FIG. 2. g& and gd as functions of c~ showing a first-order
modulated liquid crystal transition for —PV, = 0.015 (a)
and a continuous transition for —PV,. = 0.15 (b).
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become zero. In the 2D case, corresponding to Fig. 1,
we also show in the figure the lines along which T2 = 0
(marked by dashes) and T4 = 0 (marked by small squares).
To the left of the T4 = 0 line, where T4 is negative, the
first-order transition (solid line) preempts the continuous
transition. The T4 = 0 line meets the T2 = 0 line at the
tricritical point. In this way we obtain the precise location
of the tricritical points quoted earlier. It is easy to verify
that the above condition is satisfied in the context of the
modulations discussed above [13]. Note in particular that
in the 3D bcc case, a 1D set or any arbitrary 2D set for

{g; }picked out from {g }would not satisfy (2).
It is interesting at this point to compare the above

phase diagram with that obtainable in the Landau theory
of Chowdhury and co-workers [1]. For this purpose
we expanded the conventional Ramakrishnan-Yussouff
[5,6] density functional free energy in powers of the
Fourier components of p(r)/pp for the wave vectors

{g; } and {g; } in the 2D context. We truncated the

power series at different powers and found the phase
diagram by minimizing the resulting free energy. We
studied truncations up to the 12th order with the results
as shown in the inset of Fig. 1. In each of these cases
we obtain a TCP as marked; however, the numbers are
very different from, and converge very slowly to, those
of the full density functional theory. More importantly,
the continuous transition line eventually bends upwards
for large enough V„ indicating that there is no stable
crystal phase for large V, in these truncated Landau
theories, in contrast to the DFT result, where the critical
line asymptotes to c& = 0.5 for large —pV, .(2)

The condition (2) is all important, for if it is satisfied,
the existence of the TCP is robust with respect to
the inclusion of the effect of ftnite compressibility, of
larger RLV shell order parameters, and of higher order
correlations in the DFT. To see this we partition the
(full) RLV set of the crystal into a set {K(f)}, the
reciprocal lattice of the modulated phase, which includes

0, {g; }, and the set {G(f1}obtained by (new) integer

combinations of {g; };and the complimentary set {K(d1}

which includes {g; } and the remaining RLV's {G&
-(d) (d)

The order parameters for these five classes are denoted

by gp, $f, g f), gd, and gI, respectively. For the large

cp values relevant to our context, to O(1/cp ) one has
(2) (2)

gp = —In 4(1 + 1/cp ) and the DFT free energy to be(2)

minimized is

pF = —ln 4 + (ln 4) /2cII +
121 (nfl + ndgd)

2ci

to this phase, consider the Landau expansion for the
(d)

free energy in terms of gd and $I to quadratic or-

der. This will now have cross terms, determined byf""@dexp(iG~ . r)exp[gfpf + g $(f1 exp(iG(f'. r)].
Now only those $I for which such integrals are nonzero(d)

can affect the quadratic instability of gd T. his hap-

pens only if GI is a linear combination of an arbitrary
~ (d) .

number of vectors from the set {g; }and one from the-(f)

set {g; }. Let us write the resulting quadratic form as-(d)

Tdd gd + 2Td, $(d)$1 + T& gi g . Now the dominant(2) 2 (2) {d) (2) (d) (d)

instability of the modulated liquid phase will be deter-
mined by the order parameter mode gd which is that

particular linear combination of gd and g& (typically,
(d)

mostly $d plus a little bit of other g, ) which corre-(d)

sponds to the lowest eigenvalue of this (Hessian) matrix
T( ). The instability sets in when this lowest eigenvalue
of T{ ) crosses zero and goes negative. The key point is
that if condition (2) is satisfied, general symmetry rea
sons (14j ensure that the Landau expansion does not
contain any odd powers of gd either. So the TCP in

the phase diagram will be retained, but relocated, being
now given by the condition of simultaneous vanishing of
the cofficients of (gd)2 and (gd) in the Landau expan-
sion. The effect of finite compressibility, which arises

when cp = ppc( 1(q = 0) 4 —~, is taken care of by gp
(2)

which does not affect the quadratic instability of gd
Hence the tricritical point is robust under the effect of
finite compressibility, too. We have explicitly verified
these conclusions by numerical calculations including
the effects of the order parameters corresponding to
wave vectors {g2;}near the second peak in c1 )(q) and

The resulting relocated TCP's are listed in Table I.
When cp 4 ~, there is a change in density at the first-(2)

order liquid ~ solid transition, but this decreases with in-

creasing V, and vanishes at the TCP.
Finally, we discuss our DFT calculation of laser in-

duced freezing in real colloidal systems [8]. For this
purpose we considered the same experimental system as
Monovoukas and Gast [15) for which the DFT phase
diagram is known in the absence of V, [7]. The liq-
uid state DCF for this system of charged colloidal
particles with diameter 1334 A and surface charge 880e
was obtained from the rescaled mean spherical approxi-
mation of Hansen and Hayter [7,8, 16] using the model
Derjaguin-Landau-Verweg-Overveek potential [8]. We
focused our attention on the portion of the phase diagram

TABLE I. TCP coordinates for various versions of DFT.

2cn I 2ci C&

(3)
where now 4 —= vp

' f„'d"i exp[gf-lj6f(r) + gdpd(r) +
((f exp(iG f) . r) + g& (I exp(iGI . r)]. In the

modulated liquid phase $d =
g&

= 0. With respect(d)

Crystal lattice
when V, = 0

„, {g2}
(2)

CO

TCP: —P V,
(2)

Ci

2D triangular

(—1, —J&)qo
0 0 016

—oo —51 5 —oo

0.106 0.114 0.117
0.748 0.741 0.731

3D bcc

(2, 1, 1)qp
0 0 0.07

—OO —40 —OO

0.219 0.237 0.228
0.520 0.507 0.508
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where there is a first-order transition from the liquid to
a bcc phase in the absence of V, . We took the modu-
lation wave vectors (g; j of the external potential to be

-(f)

along (~1, ~1,0)qo/~2 as before. We did calculations
retaining order parameters corresponding to 10, 20, and
50 shells of the RLV's of the bcc lattice. We retained
the three-body terms in the DFT [5—7] in the same spirit
as in Ref. [7] with c(~' = 0.23. In the 3D parameter
space of impurity concentration n;, volume fraction P,
and —PV„ the first-order and continuous transitions be-
tween the modulated liquid and the crystal now take place
across surfaces, which meet in a line of TCP. We find
that in the n; ranges (1.8—2.6)X10 9 mole/em-', —PV, is
almost a constant = 0.198 along the tricritical line (com-
pared with —P V, = 0.22 obtained in the simplest theory).
The corresponding electric field strength in the laser beam
is E, = 8.0 x 104 V/m3 [17]. So in the above range
of (t) and n; values, this system should show first-order
and continuous liquid solid transitions for E & E,. and
E & E„respectively.

In conclusion, we have presented in this paper the re-
sults of a DFT for laser-induced freezing in colloidal sys-
tems which definitely predicts, for appropriately chosen
modulation potentials, the existence of tricritical points
and critical lines in the transition from the modulated liq-
uid to the (modulated) crystal for large laser power. Such
predictions are also borne out by our own recent Monte
Carlo simulations [18]. We hope to report in the future
on many other fascinating questions that can be asked
about these critical points, namely their robustness with
respect to the inclusion of fluctuation effects (especially
in the 2D context), their light scattering characteristics,
their universality class, etc. Meanwhile, our results sug-
gest that experimental studies of colloidal systems with
a view to investigating these issues would be of great
interest. We may mention that the DFT presented here
for laser induced freezing is rather general and should be
applicable with some modifications to other situations of
field induced ordering such as in ferrofluids, in electro-
rheological fluids, and in adsorbates on substrates (where
the ordering is induced by the substrate potential).
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