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We identify exact excitation content of the intermediate states for the one-particle Green s functions,
spin-spin, and (charge) density-density correlation functions of the periodic one-dimensional t Jm-odel
with inverse-square exchange. The excitatious consist of neutral S = 1/2 spinons and spinless (charge
—e) holons with semionic fractional statistics and bosonic (charge +2e) "antiholons" which are
excitations of the holon condensate. We find a set of selection rules and the regions of nonvanishing
spectral weight in the energy-momentum space for the various correlation functions.

PACS numbers: 71.27.+a, 05.30.—d, 71.10.+x

Recently, there have been many developments in un-

derstanding the family of Calogero-Sutherland models
(CSM) which are identified with their peculiar inverse-
square exchange (ISE) [1—8]. An important feature of
these models is that they belong to the same low-
energy universality class as the family of Bethe-ansatz
solvable models and may provide a new fully sol-
uble paradigm next to the noninteracting models [2].

The one-dimensional supersymmetric ISE t Jmod-el
[3] represents a fixed point model where the elementary
excitations form an ideal gas obeying fractional statistics.
In contrast to this model, the nearest neighbor exchange
(NNE) t Jmodel [9-,10], which has essentially the same
low-energy spectra spanned by the same elementary exci-
tations, obscures the simple low-energy structure intrinsic
to this class of models. We rediscover the spinons, the
holons, and the antiholons —the elementary excitations of
the NNE t Jmod-el [10]—in the context of the super-
symmetric Yangian of the ISE model. Furthermore, we
find that only the states with ftnite number of these el-
ementary excitations contribute to the spectral functions
of the one-particle Green's functions (G1')), the charge
density-density (Cl )) and the spin-spin correlation func-
tions (Cl')).

First, we examine the symmetry in the ISE supersym-
metric t-J model. The model with periodic boundary
conditions possesses, in addition to the global SU(m~n)
supersymmetry, a hidden dynamical "quantum group"
symmetry algebra called the supersymmetric Yangian
[2,4, 11]. This symmetry is responsible for the "super-
multiplets" in the energy spectrum and the ideal gaslike
features of the elementary excitations and, furthermore,
provides us with a simple numerical way to identify the
exact content of the elementary excitations relevant for
the various correlation functions.

The supersymmetric generalization of the SU(n)
Haldane-Shastry model Hamiltonian [5—7] is given by

H=t
,(, d~(n; —n, )'

where d(x) = (N, /n) si n(m x/N, ) and N, is the total
number of sites. If a; (a; ) creates (destroys) a particle
of species a. at site i and satisfies the single occupancy
condition, g a; a; = 1, the exchange operator can be
written as P;, = g & a; a,pa;pa, . If m of the species
labeled by a are bosons, and n are fermions, the model
(1) has a global SU(m[n) supersymmetry with generators

given by the traceless part of Ju = P;a; a;p. The~P t

Yangian symmetry generator of the periodic ISE model
1S

~p t tJ) = w)Ja;~aJ~a;~a Jp, (2)
~+j 'v

where w;, = cot[a (i —j )/N, ]. The higher order genera-
tors of the Yangian are obtained recursively from various
commutators involving only Jo and J& [4,11].

If we specialize to SU(1~2) supersymmetry, with a 6
{0,'f, )}, we can rewrite the Hamiltonian in terms of the

SU(2) fermionic operators c; = a; a;u as SHOP, where
Ho (up to a shift in total energy and in chemical potential)
1S

t;Jc; c, + g(J;IS; S, + V;,n;n, ), (3)
lAJ, cT i&j

where t;, = J;J/2 = —2V;, = t/d2(i —j) and n; = n;1 +
n;1, 9' is the projection operator that projects out all states
with doubly occupied sites. The ground state )4'o) of this
model is known [3,6] to be

(z; —z, )(i)' " ' ' zq' c„~10), (4)
(x,cr) i&j k j

where z, = exp(i2n. x, /N, ), Jo = (N/2 1)/2, N is the
total number of particles, and ~0) the electron vacuum
(empty state). In order to have a nondegenerate ground
state, we take N/2 to be odd. Note that this wave function
is just the full Gutzwiller projection of a free electron
state [12].

A remarkable feature of this model is that the eigen-
states of (1) form degenerate supermultiplets [5] with
multiplicities much higher than those expected from
the global supersymmetry. All supermultiplets on the
SU(m ~n) model with m, n & 0 are present (with the same
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energy and momentum, but multiplicity reduced to 2)
in the spinless free fermion SU(l(1) model [2]. This
means that they can be represented by a binary sequence
of N, —1 ones and zeros, representing (in the spin-
less fermion model) the occupations of Bloch states with
nonzero momentum (the zero-momentum orbital has zero
energy, which is the supersymmetry, and its occupation is
not fixed). There are thus 2~' ' distinct supermultiplets.

In the SU(1~2) case, the "occupation number" sequence
describes a supermultiplet spanning a large range of
possible fermion charges N. The state of minimum
charge in the supermultiplet is given by the number of
zeros in the sequence; the maximum charge is N, minus
the number of times two consecutive ones occur. The
ground state of the model with t & 0 has a sequence
111.. . 111, so its minimum charge is N = 0 and its
maximum charge is N, —(N, —2) = 2. The multiplet
represented by the alternating sequence 10101.. . 10101
has a maximum charge state N = N„which is the spin-
singlet ground state of the antiferromagnetic S = 1/2
Haldane-Shastry chain, and a minimum charge (N, —
2)/2

We study the model (1) with t & 0 and a chemical
potential that maximizes N, so the ground state has 0 &
N & N, . Then, only intermediate states with the maxi-
mum value of charge in their supermultiplet contribute to
the thermodynamic limit of the ground-state correlation
functions. To determine the excitation content of these
maximal charge states, it is convenient to add a zero to
each end of the binary sequence, expanding its length to
N, + 1. The ground-state sequence is then of the form
0101010.~ . 1111111~ . .0101010, with a central section of
consecutive ones, with equal-length wings of the alternat-
ing sequence.

In the limit N = N„the excitations of the S = 1/2 an-
tiferromagnet are neutral spin-1/2 spinons [13—15] rep-
resented by consecutive zeros (e.g, 01010010101.. .)
and spinless charge —e holons by consecutive ones (e.g. ,
. . . 010101101010.. .). At intermediate densities, the cen-
tral region. . . 1111111.. . may be considered as a holon
condensate or "pseudo Fermi sea." However, the holons
and spinons are not fermions, but semions, or particles
with "half-fractional" statistics, resulting from the spin-
charge separation of a hole, which is a spin-1/2, charge
—e fermion. A configuration. . . 11111110111111.. . has a
"hole in the holon condensate" which we will call an "an-
tiholon"; because of the semionic statistics of the holons,
we identify it as a charge +2e, spinless boson.

Usin.:concepts from Chem-Simons theory, as applied
to the tractional quantum Hall effect [16], if condensed
particles have charge q and statistics 0 = ~A, vortices or
holes in the condensate have charge —q/A, and statistics
8' = n. /A. Here holons have charge —e and 0 = n/2(a
semion), so the vortex or hole in the holon condensate (an-
tiholon) then has charge 2e and 8 = 2m (a boson). The
applicability of such "2D" concepts to 1D ISE-type mod-

els has recently been demonstrated: The holon (antiholon)
corresponds to particle (hole) excitations of the A = 1/2
Calogero-Sutherland model where the particle excitations
are semions and the holes A = 2 bosons [2,17].

The main results of this Letter can be summa-
rized in Table I, which lists all the possible ele-
mentary excitation s for the corresponding local
perturbation s of the ground state. The quantum
symmetry prevents the injected electron or hole
from breaking up into more than a very simple
set of elementary excitations consisting of the left
(right) spinons (sL,J~&), holons (hLJR)), and antiholons (h).
As a result, the spectral functions of the various dynami-
cal correlation functions vanish except in certain regions
of the energy-momentum plane (i.e., has "compact
support ")

Figures 1 —3 show the regions of compact support
formed by the finite number of elementary excitations
contributing to the intermediate states for G~'~, C~'~, and
C~', respectively. If the correlation functions are given
by the following integral:

TABLE I. List of all the possible excitations from the ground
state perturbed by the local operators c; (c; ) (G'"), n;i + n;J
(C"), and n;i —n, J (O'J). The mirror states (L R), not
listed, are also allowed. The spinon (u, ), holon (vh), antiholon

(vh), spin-wave (vo), and sound (v~) velocities always satisfy
(i) v, ~ u, , (ii) v, [uR)()v, [) v, , (iii) (vR) v, , and (iv)
for a given spinon-holon pair (sR, hR), (u„( (v„,(.

Local operator 8;

t
Cro.

n;]+ n;~

n, ]
—

n;~

Excitation contents of 6;[%0)
(s, , h, ) + h + 2(sR, h„)

(s, , h, ) + h

(s, , h, ) + h + (sR, hR)
h + 2hg

(sL, hL) + h + (sR, hR)
2$g

C(x, t) = dQdES(Q, E)e'J~"
(Q,E)CtT

The figures show the region cr where the spectral function
S(Q, E) is nonzero; this is determined by combining
the energies and (Bloch) momenta of the finite set of
elementary excitations contributing to S(Q, E)

The dispersion relations for the spinon, holon, and an-
tiholon in the thermodynamic limit are E„„,/t = —q(q ~
vo), Eh„„/t= q(q ~ vo), and Ez/r = (uo)2 —q/2, re-
spectively, where v, = ~ (spin-wave velocity), u, =
m(1 —n) (sound velocity), and n the density of elec-
trons. The right (left) spinons and holons take the up-

per (lower) signs and are allowed only in 0 ~ q ~ nn/2.
( mn/2 ~—

q
.~ 0) relative to the Q = 0 ground state,

while the antiholons propagate in region —u, ~ q ~ vo.
The curvature of the antiholon dispersion is half that of
the holon, indicating that h is made by destroying two
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holons. It is then natural to assign charge C = +2e and

S = 0 to the antiholon while C = 0 and S =
2 to the

spinon, and C = —e and S = 0 to the holon. This as-
signment is consistent with the results given in Table I
and the phase shift calculations. In fact, using this charge
conservation argument we were able to identify one extra
right holon for the local hole excitation (8; = c; ) in Ta-
ble I, which could not be resolved numerically because of
the small system size (N, = 12) studied.

We outline below how to find the regions of support for
the various correlation functions. First, we numerically
find all the eigenstates having nonzero overlap with

the states c; (c; )~Vo) (for GI')), (n;t + n;l)~I'Po) (for
C')), and (n;1 —n;t)~@o) (for C(')). Second, we identify
the excitation content of the states by inspecting the
corresponding motifs where the spinons, holons, and
antiholons can easily be identified (see Table I). We
empirically find the following selection rules that the
holon (vq), spinon (v, ), antiholon (vi-, ), spin wave (v, ),
and sound (vo) velocities always satisfy: (i) tjo & vo

(i.e., spin-charge separation), (ii) v, ~ (vq((~U, )) ~ U, ,
(iii) ~vq~ ~ vo, and (iv) for a given spinon-holon pair
(sq, h~), (v,„( (vq„[. These rules together with the

results in Table I allow us to plot the regions of compact
support as shown in Figs. 1 —3.

Figure 1 shows the region of support for the one-
particle Green's function where the states c; ~ Wo)

(c; ~'Po)) propagate in time with positive (negative)
energy with respect to the ground state. The spectral
functions should be nonanalytic along all the solid lines
where the elementary excitations either "touch" the
boundaries or the other elementary excitations. When the
antiholons are suppressed (i.e., near half filling), the holon
is accompanied either by a spinon or by three spinons in
S = 1/2 state. At 3kF (2m —3kF), where kF = mn/2. ,
the left (right) moving spinon is missing from the state

c; ~'Po), since the charge conservation prevents more
than one holon in the presence of one antiholon. Of
course, if two antiholons were allowed then states of the

type (sL, hL, ) + 2h + 2(sz, hz) would contribute. Our
numerical study indicates that states with two antiholons
do not contribute. In fact, the observed states listed in
Table I are the simplest possible states satisfying the
charge (spin) conservation with at most one antiholon.

In Fig. 2, only holon-antiholon branches are present at
4kF (2n —4kF), while the spinon-holon branches show
up at 2kF (2n. —2kF). In Fig. 3 we find that the pure
spinon excitations are possible only if they both belong to
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FIG. 1. Compact support for the one-particle Green's func-
tion. The momentum is in units of m- and the excitation en-
ergy E in ~'/t The contributing e. lementary excitations to
this region are (hi. , sL) + h + 2(hs, sR) for the positive energy
part (i.e., c; I+p)) and (si, hL) + h for the negative part (i.e.,
c; i'pp)). Their mirror states (i.e., L and R exchanged) also
contribute. The four momenta at which E = 0 is allowed are
kF, 2n. —3kF, 3kF, and 2m —kF where kF = nn/2.

0

ll/2

Wave-Number

FIG. 2 Compact support for the density-density correlation
function. (sL, hL) + h + (s&, h&), h + 2hR and their mirror
states contribute. F. = 0 is allowed at 0(2n), 2kF, 2m —4kF,
4kF, 2m —2kF. Only holon-antiholon branches are present at
4kF (2m —4kF) indicating that 4kF is the holon Fermi point.
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In conclusion, we have devised simple rules for con-
structing the motifs for the excited states of the 10 ISE
t-J model and identified the exact excitation content of
the intermediate states for the one-particle Green's func-
tion, the charge density-density and spin-spin correlation
functions. %e believe that this model is in the same
universality class as the NNE model, and that the most
relevant states for the ground-state correlation functions
of the NNE model are also given by Table I. Finally,
the presence of spinons, holons, and antiholons in two-
dimensional models and their role in the high T, super-
conductivity is an amusing possibility.
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FIG. 3. Compact support for the spin-spin correlation func-
tion. (sL, , hL, ) + h + (sR, hs), 2s~, and their mirror states con-
tribute. E = 0 allowed at 0(2m), 2kF, 2n —2kF. This indi-
cates that 2kF is the spinon Fermi point.

the same sector, otherwise they are accompanied by two
holons and an antiholon. The excitation content we find
for S,' [= (n;I —n;I)/2] should be same for S;, since the
ground state is a spin singlet. As n 0 we recover the
two spinon spectrum for the S = I/2 spin chain.

Finally, we have examined how the ISE results for
the charge of the elementary excitations change if we
interpolate between the ISE and NNE r Jmodels, which-
are, respectively, the 7 = 0 and 7

= ~ limits of the
integrable family of hyperbolic models with exchange
~ 1/sinh27(i —j) [8]. Away from the ISE limit, the
charge carried by the holon and antiholon excitations
vary with their velocity, and become equal in magnitude
(and opposite in sign) as the velocities approach the
sound velocity vo. In the ISE limit, however, the holon
charge (jv j ) vo) is always —e, and the antiholon charge
(jv j ( v, ) is always +2e. The "dressed charge" carried
by the excitations can be calculated using the asymptotic
Bethe ansatz [18].
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