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We derive necessary conditions for finite systems to exhibit two locally stable states with respect to
fluctuations in the microcanonical and canonical ensembles. The requirements are, respectively, that
there be two inflections in the logarithm of the probability distribution of the energy or the number
of particles in the canonical or grand canonical ensembles. The thermodynamics associated with the
whole phase space may be related to quantities averaged over regions of phase space and are consistent

with van Hove’s theorem.
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The embryonic first-order melting transition in finite
systems has been the subject of considerable study. It
is now clear that clusters of atoms or molecules can ex-
hibit two or more stable states corresponding to liquid-
like and solidlike forms or, under suitable circumstances,
to other forms such as soft solids or surface-melted solids
[1]. Convincing evidence has recently been obtained from
simulations in which the energy density of states is cal-
culated and used to compute a range of thermodynamic
properties [2—4]. These results confirm the conclusions
of a number of theoretical studies, starting from the earli-
est arguments based upon the quantum density of states in
rigid and “floppy” systems [5]. The latter work indicated
the existence of minima in the Helmholtz free energy for
both solidlike and liquidlike forms of a cluster over a fi-
nite range of temperature [5], and hence observable co-
existence of both forms, like isomers, whether their free
energies were equal or only moderately different. Reiss
et al. subsequently used classical capillarity theory to in-
fer the existence of a Gibbs free energy barrier between
local minima corresponding to solidlike and liquidlike
clusters [6]. Honeycutt and Andersen contrasted results
obtained by simulations in the canonical and microcanoni-
cal ensembles for a range of cluster sizes [7]. Bixon
and Jortner invoked idealized partition functions and dis-
tributions of local energy minima to study coexistence
in both the canonical and microcanonical ensembles [8].
Good agreement with simulation has also been obtained
for a specific cluster when anharmonicity is included in a
model analytic partition function [9]. In fact, coexistence
may be identified in thermodynamic functions calculated
with model densities of states using only a representative
sample of local minima and their normal mode frequen-
cies [10,11]. Separate limits for the thermodynamic sta-
bility of solidlike and liquidlike clusters have also been
found from a simple model partition function based upon
a defect model for nonrigidity [12].

Such studies show that sufficient conditions for coexis-
tence can arise in several ways. In the present Letter we
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derive the necessary conditions in terms of van der Waals
loops or S bends, for coexistence to occur, conditions on
statistical distributions, themselves based on microscopic
properties of the system. Explicitly, the conditions state
that there must be two inflections in the logarithms of
the probability distributions P(E), P(N), or P(X), of en-
ergy, number, or other extensive variable in an ensemble
based, respectively, on a constant intensive variable 7', u,
or, in general, /. This condition is of course weaker than
conditions such as the traditional S-bend (sufficiency) cri-
terion of van der Waals theory, which take segments of
isotherms to have negative slopes. We then explain how
these are related to short time averages and to van Hove’s
theorem [13], which states that the thermodynamic vari-
ables of infinite systems cannot exhibit any regions of in-
stability with respect to fluctuations when those variables
are computed from global phase space (or infinite time)
averages.

First, we consider the conditions for stability with re-
spect to fluctuations in thermodynamic variables [10,14].
In the microcanonical ensemble, the entropy must be a
maximum, and we have a stable state with respect to
energy fluctuations, when (0T/dE)yy > 0 and instabil-
ity for the opposite sign. The same is true in this en-
semble for the derivative (du/dN)y g and fluctuations
in N, while the opposite signs apply to the derivative
(0P/dV)y g and fluctuations in V, i.e., S is a maximum
when (dP/3V)n e < 0. In the canonical ensemble the last
two conditions define a minimum in the Helmholtz free
energy and a stable state, except that constant E is re-
placed by constant 7.

The microcanonical T(E) curve may exhibit a van der
Waals loop or “S bend” (Fig. 1) for a finite system. Here,
the two branches of the curve with positive slope corre-
spond to local stability, and the connecting branch with
negative slope corresponds to instability. The existence
of a loop implies that there is a range of temperature for
which two stable states of the system are possible. Such
loops have now been found in calculations based upon
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FIG. 1. Relationships between a probability distribution P(X)
and its derivatives. Top: InP(X) showing two inflections;
middle, 8 InP(X)/3X showing a loop; bottom, 82 InP(X)/aX?
crosses the zero axis twice. The vertical lines show how
the inflection points in InP(X) become turning points and
then zeros in the first and second derivatives. An explicit
example identifies X with the energy E, 9 InP(X)/dX with
1/kT, and 82> InP(X)/8X? with —(dT/dE)nv/kT?, where T is
the microcanonical temperature.

densities of states found at constant pressure and constant
volume from both simulations and model partition func-
tions, with very good agreement between the two [15,16].
(In microcanonical simulations the mean tempera-
ture is derived from the mean kinetic energy per degree of
freedom. This follows from the generalized equipartition
theorem [17], which is correct to order [18] 1/N, and
from the well-substantiated supposition of ergodicity on
the time scale of several vibrational periods.)

In the microcanonical ensemble, the energy is fixed
and there is a unique temperature if we average over all
of phase space in a simulation. However, we may also
calculate a short-time-averaged temperature [19], and for
some clusters this quantity exhibits a bimodal (or mul-
timodal) distribution which, in an ergodic system, corre-
sponds to an equilibrium between species passing between
two (or more) regions of phase space that have their own
characteristic temperatures [20]. The time scale for which
short-time averaging produces multimodal distributions is
typically several vibrational periods. Whether an exper-
iment will resolve the two characteristic temperatures or
see an average therefore depends upon the time scale of
the observation.

To clarify the physical meaning of an S bend consider
the behavior of a ensemble of clusters prepared under con-
ditions in which C, = (dE/dT)yy < 0. If the constraints
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on the ensemble are relaxed to allow exchange of energy
among the clusters, while the total energy remains fixed,
then the stable state of the ensemble consists of some clus-
ters with lower energy and some with higher energy. In
other words, the initial ensemble is unstable with respect
to energy fluctuations among the clusters. This kind of
behavior may be identified for a single cluster in a micro-
canonical simulation if and only if the system is ergodic,
i.e., an average over a large ensemble of clusters at any
instant gives the same value of any equilibrium property
as a long-time average over the history of a single sys-
tem. When short-time averages of quantities such as the
kinetic energy are taken, it is often possible to identify
two or more distinct species corresponding to liquidlike
and solidlike behavior [20]. The different species may
in turn be related to distinct regions of the potential en-
ergy surface, and so this dynamical coexistence is analo-
gous to the fluctuation between two geometrical isomers
of a molecule which would have their own characteris-
tic temperatures in the microcanonical ensemble. Hence,
in the present context, coexistence does not refer to co-
existence of two distinct phases in static physical con-
tact, but rather to dynamical coexistence of two (or more)
phaselike forms. Nevertheless, this dynamic coexistence
is related to the static equilibrium of bulk phases and to
the stability limits of superheated and supercooled sys-
tems [12]. In practice, the ergodicity condition means that
the energy must be high enough for the cluster to pass
among minima in the liquidlike region and between solid-
like and liquidlike regions on relevant, observable time
scales, whether for experiment or simulation.

We first deduce the necessary conditions for an S bend
to occur for the variation of temperature with energy in
the microcanonical ensemble and the variation of chemi-
cal potential with the number of atoms in the canonical
ensemble, where all quantities are calculated as complete
phase space averages. The probability distribution func-
tion of the energy P(E) for particular, fixed N, V, and T
in the canonical ensemble is

P(E) = QW,V,E)e PE/Q(N,V,T), ¢))

where B8 = 1/kT, and Q and Q are the micro-
canonical and canonical partition functions. Now
S=knQW,V,E)and T = 1/(dS/3E)n v, so we have

(55, - m (e, @

Hence, to see a loop in the microcanonical T(E) function
the right-hand side must change sign twice as E increases.
The second derivative of InP(E) must therefore go
through zero twice, and hence InP(E) must have two
inflections as a function of energy. The correspondence
between these curves and their derivatives is shown
in Fig. 1. The necessary condition for a loop in the
microcanonical caloric curve T(E) is therefore that the
logarithm of the canonical energy distribution function
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should have two inflections. One way in which two such
inflections can arise, i.e., one sufficient condition, is that
P(E) be the sum of two contributions that are centered on
different values of E. This suggests that we might be able
to partition phase space into regions identifiable by some
order parameter [5,12,21].

To analyze u(N) in the canonical ensemble we consider
the distribution function for the number of atoms in the
grand canonical ensemble for particular u, V, T:

P(N) = Q(N,V,T)eP*N /E(u,V,T), 3)

where E is the grand canonical partition function. In this
case, A= —kTInQ(N,V,T)and u = (3A/dN)y 1, so that

(&_1;1[31_(@)” =-B (g—;)v’r . 4)

Therefore, the necessary condition for a loop in the
canonical chemical potential as a function of the number
of atoms is that the logarithm of the grand canonical
distribution function P(N) has two inflections. In fact,
Hill [22] noted some time ago that a loop will result if
P(N) is bimodal; the requirement of two inflections in
In P(N) is less restrictive. Absence of a loop in, e.g.,
the microcanonical T(E) does not preclude the presence of
a loop in, e.g., P(V). Thermodynamic stability therefore
depends upon which sort of fluctuation is in question.

It is not difficult to generalize this analysis. Let X
and / represent conjugate thermodynamic extensive and
intensive variables, respectively, e.g., £ and 1/T. The
other two thermodynamic variables which are needed to
define the state of the system are arbitrary and will be
omitted hereafter. We consider a thermodynamic function
B, which is a natural function of X, so that dB contains
a term in /dX, and B is related to a partition function
Z(X) by B « InZ(X). Then the function B’, which is
the Legendre transform B’ = B — IX of B, is related
to a partition function Z’(I) by B’ « InZ'(I), and the
differential dB’ contains a term in —XdI.

B and B’ are the natural thermodynamic functions for
ensembles with X and I fixed, respectively. When the
extensive variable X is free to vary, an extra constraint
term is needed in setting up the usual constrained maxi-
mization problem which defines the probability distri-
bution in the given ensemble. The net result is that
Z'(I) = Yy Z(X)exp(—1X), where the sum becomes an
integral if X is continuous. The probability distribution
of X for a particular, fixed value of / is therefore

PX) = 2z(X)e X /Z'(D), )
and a loop may occur for the average value of I as a
function of X in the unprimed ensemble if InP(X) has
two inflections. Furthermore, no loop is possible in the
primed ensemble, because the derivative of the average

value of X is proportional to the mean square fluctuation
of X:

<&Q

22) =~ - o <o, ©®

and so (X) is a monotonic function of /. Familiar
examples should be the energy in the canonical en-
semble [(8(E)/dB)nv = —{(E — (E))?*)] and the num-
ber of particles in the grand canonical ensemble (GCE)
[(HNY/dpIny = B{N — (N)?)].

We now show how the above conditions are related
to short-time-averaged properties, or, more rigorously,
averages restricted to certain regions of phase space. This
assumes that a suitable order parameter exists by which
the forms, 1 and 2 say, can be recognized [21]; the rigidity
parameter, discussed in earlier work [5,12], is one such
possibility. Then we may write

S(E)Y=kInQ(N,V,E)=kIn[Q;(N,V,E)+ Q,(N,V,E)],
@)

which we abbreviate for convenience as § = kIn(QQ; +

€),). Hence,
1 891) (602)
—_— = — + —_—
T kl:( OE /Ny OE /Ny 0

(as)
0E /Ny
0, (alnﬂl) O, (6]1101)
= _ —— + —_ —
k Q oE N,V k Q oE N,V

=pi/Ty + p2/T2, ®)

where p,(N,V,E) is the probability of finding the
system in region 1 (p; + pp = 1), and 1/T; = k[d
X InQ(N,V,E)/dE]yy defines Ty, etc. It is now easy
to show that

(e T35 - 1)
AE /Ny dE /Jnv\T2 T

T {le(aE NV * T? \ 3E N,v]’ ©)
where we normally expect the first term to be negative
and the second to be positive. For example, suppose
1 = solidlike and 2 = liquidlike and that the liquid-
like form appears at higher energies or temperatures
than the solidlike form. Then the liquidlike form ex-
hibits a relative increase of entropy with energy so that
(dp1/3E)yy <0 and at a given total energy T; > T,
because the solidlike region has lower potential energy.
Hence, stability conditions require that the second term
be positive. The condition for an § bend in T(E) is
that (3T /9E)y,y must change from positive to negative
and back again. In fact, writing P(E) = [Q,(N,V,E) +
Q,(N,V,E)]le PE/Q(N,V,T) it is easy to reach precisely
the same expression for (37 /3dE)y v using Eq. (2). Some
useful results can be derived from this framework, as
shown elsewhere [16].

So, should we say that a cluster exhibits “coexistence”
when we see a double inflection in a globally averaged
property, or when distinctive regions of phase space
can be identified by separate averaging? Such regions
certainly exist for the thirteen-atom Lennard-Jones cluster

I
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(LJ,3) but its microcanonical T(E) has an inflection
rather than an S bend, because the relative difference
in heat capacities between the solidlike and liquidlike
regions is small by comparison, for example, with that
of LJss. Could one see an S bend or double inflection
without finding a multimodal distribution for short-time
averaging? This really depends upon our ability to find an
appropriate order parameter [21]. In general, we expect
to see a feature indicating two phaselike forms in globally
averaged thermodynamic properties of a finite system
if its phase space has distinctively ordered regions and
an observable time scale for the duration of each form.
However, the prominence of the feature depends upon
how different these forms are.

Finally, we comment upon the relation of the present
work to van Hove’s theorem [13], which states that
the region of negative slope associated with an S bend
in a thermodynamic function is forbidden in the bulk
limit. This is the source of the textbook assertion that
such features are the result of “approximate theories.”
However, finite systems can certainly exhibit S bends with
stability limits which we associate with superheating and
supercooling, as for the bulk [12]. The two-state model
considered above does not provide a link to the bulk limit,
because it does not allow for phase separation for which
more complicated models are necessary [1].

We have now deduced the necessary conditions for two
separate phaselike forms of a finite system to occur and
coexist and have related these to short-time averaging
or, more formally, to averages over distinct regions
of phase space [21]. Taken together with previous
work which establishes various sufficient conditions for
multiple phaselike forms to occur, we now have a
reasonably coherent understanding of coexistence of two
phases in finite systems. The extension of these necessary
conditions to the coexistence of multiple phases may also
be within our grasp [1]. Finally, it should now be possible
to predict from estimates of densities of states which
cluster sizes will exhibit coexisting phaselike forms and
which will not
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