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Bubble Breakup in Two-Dimensional Stokes Flow
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A new class of exact solutions is reported for an evolving bubble in a two-dimensional slow viscous
How. It is observed that for an expanding bubble the interface grows smoother with time, whereas the
contracting-bubble solutions display a tendency to form sharp corners ("near cusps") for small values

of surface tension. In the latter case, we also obtain analytic solutions that describe bubble breakup:
For a large class of initial shapes, the interface will eventually develop a thin "neck" whose width goes
to zero before the bubble is completely removed from the liquid.

PACS numbers: 47.15.Gf, 47.55.Dz, 68.10.—m

The dynamical process whereby a single mass of fluid
breaks into two or more pieces has recently become the
subject of intensive theoretical [1—4] and experimental

[5] research. One of the motivations for these stud-

ies has been the realization that such a phenomenon
provides a simple example of singularity formation in
a hydrodynamic system [6]. The analogous problem of
bubble breakup has received considerably less attention.
It should be noted nevertheless that there exists exten-
sive literature on the deformation and burst of small drops
and bubbles in a shear flow [7]. In many of these stud-

ies, however, the term "drop breakup" generally refers to
the nonexistence of a steady solution when the applied
shear strength exceeds some critical value; fewer works
have considered the actual fragmentation of the drop or
bubble [8].

In this Letter, we report what we know to be the first
instance where analytic solutions describing the bubble
shape up to the breakup point have been found. More
specifically, we present below a general class of exact
solutions for an evolving bubble in a two-dimensional
viscous flow in which inertial effects are neglected
(Stokes flow). Our solutions are given in terms of a
conformal mapping and can describe both expanding and
contracting bubbles in an otherwise quiescent flow. In
the case of growing bubbles, the solutions have a simple
behavior in the sense that for any given initial shape the
bubble will asymptote an expanding circle. The case
of contracting bubbles, on the other hand, displays an
array of rather interesting phenomena. First, if surface
tension is neglected, the solutions will in general develop
a cusplike singularity before the bubble fluid ("air") is
totally extracted. The inclusion of a small surface tension,
as expected, prevents the occurrence of actual cusps and
leads to the formation of "narrow structures" (i.e., near
cusps whose "radius of curvature" vanishes exponentially
with the surface tension parameter) similar to those
observed in a viscous drop with suction [9]. As the bubble
contracts, two scenarios are possible: (i) If initially the
bubble either has an elliptical shape or possesses nth-fold
symmetry (i.e., invariance under rotation by 2m. /n, for
n ) 2), then the bubble area will shrink to zero; but (ii)

with neither symmetry initially present, the interface will

develop a thin "neck" whose width becomes zero before
the air is completely removed.

Physically, the second scenario above means that the
contracting bubble (e.g., a dissolving gas bubble) would
eventually break up into two or more bubbles before
disappearing completely. Since our solutions break down
at the time when the two sides of the interface "touch"
each other, we are unable to follow the dynamics of the
newborn bubbles. We emphasize, however, that contrary
to the cases of singularity formation mentioned in the first

paragraph no physical quantity blows up as the bubble
approaches "breakup. " Thus we refer to this process as a
"topological singularity" caused by the loss of univalence
of the conformal mapping.

It has recently been noted [9] that there are interest-

ing similarities between free-boundary problems in Stokes
flow and analogous problems occurring in the widely
studied Hele-Shaw cell [10]. For example, in both sys-
tems, solutions for a viscous drop with suction in the ab-
sence of surface tension will generically develop a cusp
singularity before the fluid is completely removed [9].
Our results, however, reveal a major distinction between
these two systems. Cusp formation in a Hele-Shaw cell
(at zero surface tension) occurs in the unstable displace-
ment of a more viscous fluid by a lesser one [11]. In
Stokes flows, on the other hand, such a displacement has
no necessary bearing on cusp formation —the expand-
ing bubble does not lead to cusps, whereas rather unex-
pectedly from the viewpoint of the Hele-Shaw analogy,
bubble contraction does so (for zero surface tension).

The formulation (in terms of conformal mapping) of
the problem of an inviscid bubble placed in a two-
dimensional Stokes flow parallels that of a 2D viscous
drop, for which exact solutions have recently been re-
ported [12,13]. We first recall that the problem of 2D
Stokes flow can be conveniently formulated in terms of a
stream function P(x, y), defined as
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where u] and u2 are the x and y components of the fluid
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V/=0, (2)

so that we can use the Goursat representation for bihar-
monic functions to write [15]

0 = lm[zf(z) + g(z)], (3)
where f(z) and g(z) are analytic functions of z = x + iy
in the fluid region. One also has the following identities:

velocity, respectively. Here P obeys the biharmonic
equation [14]

condition on the unit circle (~g~ = 1):

z, + 2F(g, t)

gzz 2Izp I

'

where F(g, t) = f(z(g, t), t) and 7. = o/.p, . We notice
that the quantity within square brackets is an analytic
function of g in

~ g ~
( 1. (Note that the simple poles

at g = 0 in both the numerator and denominator cancel
out. ) It thus follows from the Poisson formula [15] that
for (g~ & 1

——i ~ = 4f'(z),P
p

(4)
where

z, + 2F(g, I) = rgl(g, t)z&,

+ I+2 —f(z) + zf'(z) + g'(z), (5)

where p is the pressure, ~ is the vorticity, and p, is the
viscosity. Here prime indicates derivative and f denotes
the so-called conjugate function f(z) = f(z) (and similarly
for g).

On the bubble surface, we must also satisfy (i) con-
tinuity of the shear stress and (ii) the requirement that
the jump in the normal stress across the interface equals
the product of the surface tension o. times the curvature
K. These two conditions can be written as one complex
equation involving the functions f and g as follows [16]:

f(z) + zf'(z) + g'(z) =-
2p

where s is the arclength traversed in the clockwise
direction and the subscript denotes partial derivative.

Finally, to completely specify the problem we need to
prescribe appropriate boundary conditions at infinity. For
a bubble whose area is changing at a rate m, it can be
shown that [16]

(6)

+ O(1/z'), as ~z)2' Z

Notice that m can in principle be any arbitrary function
of time. Henceforth, we will take m to be a negative
constant (m ~ 0) to focus on the case of contracting
bubbles. We look for solutions with vorticity vanishing
at infinity so that Eq. (4) implies

g'(z)— (7)

"
z + O(1/z), as lzl, (g)

4p
where p (t) is the pressure at z = ~. Here, however,

p cannot be specified a priori but rather is determined
a posteriori once the bubble shape is known [16].

Next we introduce the conformal mapping z(g, t) that

maps the interior of the unit circle in the g complex plane
to the fluid region (i.e., the exterior of the bubble) in the z

plane, such that the g = 0 corresponds to the point z = ~.
We thus write

f(z)—

z(C. &) = + h(C, &),
a(t)
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where a(t) is chosen to be real and negative and h(g, t)
is analytic in the interior of the unit circle (~P~ ~ 1). The
kinematic condition that on the interface the normal com-
ponent of the fluid velocity equals the normal component
of the interface velocity yields the following boundary

G(C t) = C + O(f ). as g: 0. (14)

Now consider the boundary condition (6) recast in the f
variable. Using Eq. (11)to eliminate F(g, t) from Eq. (6),
we can then write G(g, t) in terms of zQ', t). Once this is
accomplished, the requirement that G(f, t) behaves as in

Eq. (14) will immediately produce a set of ODE's for the
coefficients of the mapping function z(f, t).

Here we take up this program for the particular case in
which z(g, t) is given by

+ b(t)& + c(r)&', (»)z(k, r) =

where b(t) and c(t) [along with a(t)] are real. Carrying
out the procedure described in the preceding paragraph,
we obtain the following system of ODE's [16]:

X = —47JpX, (16)

(17)Y = —27I2X —27lpY,

m
Z

where X = ac, Y = b(a —c), Z = a —b2 —3c2, Io =
1(0, r), and I2 = „ I&I(0, t). Notice tha—t 10 and Iq depend

I + I

4mi~i .
~=i g' g' —g Izi(g', t) I

We now present our exact solutions to the problem.
We first note that it can be shown [16] that the nature of
the singularities (including that at g = ~) of the function

h(f, t) is preserved by the dynamics given in Eq. (11) (or
rather its analytical continuation to ~g) & 1). This implies,
in particular, that if h is initially a polynomial of degree N,
then it must remain so for all times for which the solution
exists [17]. We thus seek solutions of the form

h(&, r) = g b, (r)P, (13)
j=l

where bj are real coefficients. The problem now consists
of finding a system of ordinary differential equations
(ODE's) for the coefficients a(t) and b, (t). This can be
achieved as follows.

We first define the function G(g, t) = g'(z(g, t), t),
which is analytic in ~g~ & 1. Moreover, in view of
Eq. (9), the asymptotic condition (7) implies that
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(19)

c 2 m
c 4ra Ip +

a + 3c 2'
plus the area condition az —3c2 = [A(0) + mt)]/n
(Here for definiteness we assume c ) 0 initially. ) A
qualitative analysis of this ODE can also be easily
performed. For instance, in the case of zero surface
tension (r = 0), one can readily verify that c increases
and a decreases (in magnitude) monotonically with time.
This implies, in turn, that there will be a time t = t, ~ tf
for which a = —3c 4 0. In other words, at t = t, the
critical points go = e' ~4(—a/3c)'i4 of the conformal
mapping [i.e., the zeros of zt(g, t)] impinge on the unit
circle, thus leading to the formation of cusps on the
interface and the subsequent breakdown of the solution.

The inclusion of surface tension is expected on general
grounds to prevent the formation of actual cusps. That
this is indeed the case here can be seen easily by
examining the right-hand side of Eq. (20). Initially, as c
increases, the zeros go march in toward the unit circle. As
they approach the unit circle, however, the quantity Ip will
grow bigger [recall that Io = I(0, t) is always positive and
diverges if a zero lies on the unit circle; see Eq. (12)], so
as to slow down their motion, thus causing the formation

(20)

on a, b, and c in a manner that can be calculated from
Eq. (12). Now noting that the area A enclosed by the
curve obtained as the image of the unit circle under the
mapping (15) is given by A = m. (a2 —b2 —3c2), we
immediately see that Eq. (18) is equivalent to A = m.
After solving this equation explicitly (for constant m),
we numerically integrate Eqs. (16) and (17) for specified
initial data. Before discussing the general case above,
however, it is instructive to examine first the following
two particular cases: (i) elliptical bubbles, for which c =
0, and (ii) bubbles with fourfold symmetry, in which case
b=0.

Eliiptical bubbles S.e—tting c = 0 in Eqs. (17) and

(18) and solving for b yields
~ b m
b =— 2ra Ip +

a2 + b2 2~
plus the area constraint: a~ —b2 = [A(0) + mt]//m. ,
where A(0) is the area of the original bubble. (Here for
definiteness we assume b & 0 so that the ellipse major
axis is aligned with the x direction. ) This ODE is par-
ticularly simple to analyze if surface tension is taken to
be zero (r = 0). In this case, one immediately sees that
b increases and a decreases in magnitude monotonically
with time (recall that m ( 0). Since the bubble area
must vanish at t = tf = A(0)/)m), we must then have

a(tf) = b(tf) 4 0. In other words, the final stage of the
bubble is a slit of length 2~a(tf)[ along the x axis. In the
case of nonzero surface tension (r 4 0), an asymptotic
analysis of Eq. (19) in the limit of vanishing area shows

[16] that the bubble will also shrink to a slit whose size
decreases with r.

Fourfold symmetric bubbles. In this cas—e we set b =
0 and solve Eqs. (16) and (18) for c:

of "narrow structures" (near cusps) on the bubble surface.
In Fig. 1 we show a sequence of interface shapes, up to
the formation of the near cusps, for m = —1 and r = 0.1.
A more detailed asymptotics analysis reveals [16] that,
once formed, these near cusps persist until the final time:
the bubbles will subsequently shrink to a point through a
succession of geometrically similar shapes.

In the example above, we have seen in some detail
how surface tension effects prevent the formation of
cusplike singularities and guarantee that the air will be
completely removed from the liquid. Recall also that for
elliptical bubbles, total removal of air is always attained
(although the bubble shrinks to a slit rather than a point).
The situation changes considerably, however, when bot1.

b and c are initially nonzero. In such cases, a new
phenomenon occurs: The bubble will develop a "thin
neck" whose width will go to zero at a time t = tb + tf.
This is illustrated in Fig. 2, where we show a sequence of
interface shapes leading to the bubble breakup. Beyond
the touching time tb, the solution ceases to be physically
meaningful since the mapping function z(f, t) is no longer
one to one. We note, however, that the mathematical
solutions can be continued for t ~ tb, in which case the
two sides of the interface would simply "cross" each
other. Thus, while there is a "topological singularity,

" the

mapping function has no singularity at the pinching point
and the neck width goes to zero linearly in time.

We have thus seen that due to the breakup mechanism,
our solutions above will always "fail" to remove the air
completely from the Quid so long as bc 4 0 initially.
More generally, this will always be the case whenever
the initial shape possesses neither elliptical nor nth-fold
symmetry [16]. It should be mentioned nevertheless that
the larger the surface tension (or slower the suction rate)
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FIG. 1. The evolution of a fourfold symmetric bubble for
m = —1 and r = 0.1. Note the formation of "near cusps" on
the innermost interface.
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FIG. 2. The evolution of an "asymmetric" bubble leading to
breakup. Parameters are as in Fig. 1.

the more effective this partial removal will be, that is, the
smaller the bubble area at the time of breakup. We also
note that higher order polynomials allow for breakup into
more than two bubbles [16].

As a concluding remark, we would like to add that
we have also studied the case in which m is taken to be
proportional to the bubble perimeter, as a possible model
for a gas bubble dissolving into the liquid. Here the re-
sults obtained were quite analogous [16] to those reported
above for constant m. In particular, bubble breakup was
observed for a large class of initial shapes. The dynamics
beyond breakup (where presumably conformal mapping
for multiply connected domain might be useful), as well
as the effect of a nonzero viscosity ratio on the breakup,
remain to be analyzed. (In the latter case, the interior flow

can no longer be neglected and singularities in the gradi-
ents of fluid velocity inside the bubble are expected to de-
velop at the pinchoff point. ) While our results above are
for a purely 2D Stokes bubble, which might not be experi-
mentally feasible, from the similarities of the equations
one might expect similar qualitative behavior for 3D axi-
symmetric bubble, though the analogy is likely to break
down near pinching.
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