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We examine photodetachment of H™ in parallel electric and magnetic fields, hv + H™ — H + e~

using semiclassical approximations.

The fields cause the electron to return to the atom, producing

recurrences that are visible as interference oscillations in the photodetachment cross section. As the

energy is varied, new returning orbits are created through bifurcations.

Each such new recurrence

increases the complexity of the absorption spectrum, and each bifurcation causes a local failure of the
semiclassical approximation. The failure is repaired by a Fresnel diffraction integral.

PACS numbers: 32.80.Fb, 03.65.Sq, 05.45.+b, 32.60.+i

Periodic orbits play a central role in nonlinear dy-
namics—in Poincaré’s words, they offer “the only open-
ing through which we might try to penetrate the fortress
(Chaos) which has the reputation of being impregnable.”
This classical statement holds also in quantum mechan-
ics, wherein the periodic orbit theory [1] of Gutzwiller,
Balian, and Bloch and Berry provides a general theoretical
framework for studying quantum manifestations of classi-
cal chaos. Periodic orbits produce scars in wave func-
tions and oscillations in the density of states, while closed
orbits produce oscillations in absorption spectra and real-
time recurrences that have been observed in many atoms
and molecules.

Bifurcations of periodic orbits and of closed orbits are
of particular interest [2]. A bifurcation is defined as the
creation of new periodic orbits as a fixed parameter of
the system is varied (such as the total energy or the mag-
netic field strength). Bifurcations are readily observable
because they create new recurrences in absorption spectra,
and because at a bifurcation observed recurrences are es-
pecially strong. In fact, semiclassical theory predicts that
the recurrence strength diverges at every bifurcation, be-
cause a bifurcation is correlated with a focus of classical
orbits. We have seen many such cases in atomic spectra.
This is a deep problem for periodic orbit theory, because
every stable periodic orbit produces such focusing effects,
which in turn lead to vanishing denominators in the peri-
odic orbit sum.

We consider photodetachment of an electron from a
negative ion, hv + H™ — H + e¢7, in the presence of
static parallel electric and magnetic fields [3]. This sys-
tem constitutes a key model which opens the door to the
solution of the above problems. This model has the fol-
lowing properties: (1) The relevant parts of the model
are exactly solvable. Whereas the mathematical theory
of bifurcations is very abstract, everything in the present
system can be understood by elementary methods. (2) It
admits a simple structure of closed orbits and their associ-
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ated recurrences, and it possesses an orderly sequence of
bifurcations. (3) At each bifurcation a certain geometrical
structure—a cylindrically focused cusp—passes through
the origin. This causes the semiclassical approximation
to fail. (4) The failure is repaired by a simple diffrac-
tion function, a Fresnel integral. The integral provides a
uniform approximation which is always finite and which
behaves correctly in all limiting cases. (5) The focused
cusp is sufficiently similar to the structures found in exci-
tation of neutral atoms that the present model has helped
us to derive appropriate formulas for those more diffi-
cult cases. (6) Finally, the model accurately represents a
system on which experimental measurements can test the
predictions.

Following conventional ideas, we describe electron de-
tachment by saying that the active electron is initially
loosely bound to the hydrogen atom by a short-range,
spherically symmetric potential. The Hamiltonian gov-
erning this electron is [4]

1 L?
H=E(Z+;ﬁ)+wCTLZ+%mw§p2
1
+ ;n—pz + eFoz — eVy(r). €))

If the active electron absorbs a photon, it leaves the
atom traveling radially outward in any direction, but with
a fixed initial speed. Outside the short range of the
binding potential V,(r), the electron feels only the static
parallel electric and magnetic fields. Accordingly, the
z-motion is uniform acceleration, and the motion in p and
¢ is a circular motion at the cyclotron frequency w,

z2(t) = tQE/m)"?*cosby — t*eFy/2m,

p() = Q/w.) RE/m)'?sing Isinw2/2] , ()
o) = % + o,

where 6y, ¢¢ are the polar and azimuthal angles defining
the initial outward motion.
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Every classical orbit that subsequently returns to the
atom produces a recurrence that may be visible either in
real time or as oscillations in the photoabsorption cross
section. What are the closed orbits? We find them easily
from Egs. (2). For the z-motion, the time required to go
from z = 0 up against the electric force and then return
to z =0 is 1%, = 2(2mE)'/?cosby/eF,. The motion in
p(t) is a sinusoidal oscillation and represents cyclotron
motion in the magnetic field. The electron returns to
p = 0 at each cyclotron period t2,, = 2n7/w.. A closed
orbit occurs whenever the electron goes out with energy
and direction of motion such that 1%, = t2,,.

It follows that one returning orbit always exists: it
lies on the positive z axis, and at very low energies
this is the only orbit that can exist. The return time
for p motion is the fixed cyclotron time, independent of
the energy and independent of the radius of the motion.
However, the return time for z motion cannot exceed
11(E) = 2(2mE)"/?/eF,, which at small E may be much
less than the cyclotron time. Therefore, for energies such
that 7y(E) < 27 /w,, the only possible returning orbit lies
on the positive z axis.

If we increase the electron’s energy, the return time of
the parallel orbit also increases until, at the first “bifur-
cation energy,” it is exactly equal to one cyclotron time.
At this point, a new returning orbit is created. Increas-
ing the energy further, the return time of the parallel orbit
continues to increase. However, by “aiming” the electron
at a different angle, we put less energy into the z motion
and more into the p motion. Above the first bifurcation
energy there always exists an initial direction that divides
the energy between the two modes in such a way that the
z return time equals the p return time 27 /w, so the orbit
goes up and down in z while simultaneously executing a
single circle in (x, y).

We may say that the new orbit is created out of
the parallel orbit, and it moves away as the energy is
increased. This phenomenon is what we define as a
bifurcation of an orbit closed at the origin.

As we increase the energy further, a second bifurcation
energy occurs, at which the return time of the parallel or-
bit is exactly twice the cyclotron period. At this point an-
other new returning orbit is created, which undergoes two
cyclotron circles in (x, y) while simultaneously moving up
and down in z. As we continue to increase the energy, a
sequence of bifurcations occurs, with the nth bifurcation
occurring at E, = n?m*(eFy)?/2mw?, where t)(E) is n cy-
clotron times. Resulting closed orbits are drawn in Fig. 1.

We need to know exactly what happens to the whole
family of outgoing trajectories at a bifurcation. As stated
earlier, each family is defined by the condition that the
electron begins at the origin (p = 0, z = 0) with fixed
speed moving in any direction. For low energies we have
the families of trajectories depicted in Fig. 2. Caustics
(boundaries between allowed and forbidden regions where
trajectories cross over each other and semiclassical ap-
proximations diverge) are apparent in the figure. In the
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FIG. 1. Some orbits closed at the nucleus for parallel electric
and magnetic fields.

lower part of the left-hand figure, caustics come together
to form an upward-pointing cusp, whose tip is located
at z =~ —1.8 X 10° a.u. Since ¢ is an ignorable coordi-
nate this cusp is actually a three-dimensional structure,
which we call a focused cusp, obtained by rotating the
two-dimensional cusp through 27r. This focused cusp is
directly connected with the bifurcations of the parallel or-
bit. As we increase the energy this cusp rises toward the
origin, and there exists an energy at which the tip of the
cusp precisely touches the origin. This energy is exactly
the first bifurcation energy, where a new closed orbit is
created. On the right, we show the family of trajectories
at an energy above the first bifurcation energy but below
the second. The new orbit created at the first boundary en-
ergy is shown along with the parallel orbit. Another cusp
at z =~ —4.2 X 10° a.u. has appeared. As we increase the
energy to the second bifurcation energy E,—; this cusp will
eventually touch the origin, and the second new orbit is
created. This sequence of events continues and produces
all the other bifurcations. At every bifurcation a focused
cusp touches the origin.

Semiclassical methods give a simple formula for
the photodetachment cross section: o (E) = oo(E) +
Z;zo ol (E), where oo(E) is the cross section in the ab-
sence of fields, and oZ,(E) is the oscillatory contribution
to the cross section arising from the jth closed orbit. We
find [4,5]

Jj=0 _
T ret
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X (cosy)*/? sin(®; — 7/4), (3b)

where ®; = S;/A — p;w/2 is the action around the jth
closed orbit corrected by the Maslov index u;, and where
J = 0 refers to the parallel orbit.

Equations (3) say that the recurrence amplitude of
the parallel orbit [defined as the prefactor of sin®q in
Eq. (3a)] diverges at every bifurcation because of the
sin in the denominator. Those divergences are visible in
Fig. 3, and they identify the bifurcation energies. This
prediction is of course incorrect. To fix it we need an
accurate wave function of the cylindrically focused cusp,
which can be constructed using Maslov’s methods. By re-
expressing the Schroedinger wave function in the mixed
position-momentum space

A representative calculation is shown in Fig. 3. Su-
perimposed on a gradually rising photodetachment cross
section there are oscillations connected with each closed
orbit. Close to E = 0 is a simple pattern, then at each
of the bifurcation energies a new oscillation appears, and
the pattern grows steadily more complex as the energy
increases.

‘i'(px,py,z) and using cylindrical coordinates in that
space, the wave function and the resulting photodetach-
ment cross section can easily be reduced to a Fresnel
integral [6]. Using the definitions given in Ref. [7], the
contribution to the photodetachment cross section arising
from the combined effects of the parallel orbit and the nth

Families of trajectories outgoing from the origin with fixed speed at three different energies.

new orbit at energies close to the nth bifurcation is [7]
o = —30o(meFy/p> cos>6y)'/? Im[ei‘sf e du].
up

This formula is finite at all energies and reduces to
Eq. (2a) plus (2b) (with j = n) when z. is sufficiently far
from the origin.

)

o, (a
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FIG. 3. Photodetachment cross section according to semiclas-
sical formula. Each bifurcation leads to a divergence followed
by a more complicated oscillatory structure.
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FIG. 4. Photodetachment cross section near the fourth bifur-
cation using exact quantum theory (heavy line) and uniform
semiclassical approximation (light line).

Results are shown in Fig. 4. From the corrected for-
mula, we find that (1) generally the recurrence amplitude
of the parallel orbit is much less than that of the other or-
bits, but (2) near a bifurcation they become comparable,
and (3) exactly at each bifurcation, the combined recur-
rence amplitude of the parallel orbit and the new orbit
together is precisely half the recurrence amplitude of the
new orbit by itself.

All of these consequences of the model can be tested ex-
perimentally, preferably by scaled-variable spectroscopy.
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e is the absolute value of the electron charge, w, is the
cyclotron frequency eHo/mc, Fy and Hy are the applied
electric and magnetic field strengths, V,(r) is the effective
atomic potential that binds the active electron to the
hydrogen atom, and L. = xp, — yp, is the conserved z
component of the angular momentum, which we take to
be zero.

A full derivation will be published elsewhere.

Proof: The generator of the Lagrangian mani-
fold for a two-dimensional cusp is the function
3(ps.z) = \2mE — p2(z — z.) + ap? and the as-
sociated wave function in configuration space is
known as a Pearcy function. However, for a cylin-
drically focused cusp, replace p? by p? + p2, and
the wave function in configuration space is W(xyz) =
[explilp.x + p,y + S(p., p,))/h}dp. dp,. We need to
evaluate it at the origin x =0, y =0, and z = 0. Use
cylindrical coordinates for the integration, expand the
square root in powers of (p? + p?), and (voild) there is
the Fresnel integral. '

Im means imaginary part, p = v2mE, B = pz. —
mngzf/4pcos300ﬁ - (}LQ - 1)77'/2, Uy = —(26/2) X
(meF,/ ph cos?)'/?, 8 is the initial angle of the new
orbit after the bifurcation, or zero before the bifurcation,
z. = z(nt.) is the location of the cusp at the given energy.
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Families of trajectories outgoing from the origin with fixed speed at three different energies.
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