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Efimov States in Halo Nuclei
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We investigate conditions for the occurrence of Efimov states in the recently discovered halo nuclei.
These states could appear in systems where one neutron is added to a pronounced one-neutron halo
nucleus. Detailed calculations of the properties of the states are presented and promising candidates are
discussed.

PACS numbers: 21.10.6v, 21.45.+v

The Efimov effect was discovered theoretically as a
peculiar behavior of three particles interacting by short-

range two-body potentials [1]. The effect appears when

at least two of the binary subsystems have extremely large
scattering lengths or bound states at nearly zero energy.
Then a number of three-body bound states arise with

enormous spatial extension and exceedingly small binding
energies. Even when none of the binary subsystems are
bound, the three-body system may have a huge number of
bound states. One surprising consequence is that more
three-body bound states can appear by weakening the
potentials such that the scattering lengths increase.

These states have not been seen experimentally yet,
but their possible existence has been investigated theo-
retically in a few systems, such as the three 4He atoms
(4 He trimer) [2]. Such investigations have been rather de-
manding in terms of computer capacity as the extremely
small binding energies and the large spatial extensions of
the systems put strict requirements on the numerical ac-
curacies. However, recently a new efficient method was
developed for solving the Faddeev equations in coordinate
space [3]. The method is particularly suitable for study-

ing the Efimov effect.
Halo nuclei are nuclear systems with unusually large

spatial extensions and small binding energies [4]. They
are mainly found on the neutron drip line, but may also
appear as excited states of normal nuclei as well as on
the proton drip line. The characteristic properties of halo
nuclei offhand matches the description of Efimov states
rather well. The fact that they often are describable
as two- or three-body systems furthermore improves the
resemblance. The purpose of the present Letter is to
investigate the conditions for the occurrence of Efimov
states in the new structures called halo nuclei. This is
only possible to do accurately and systematically due to
the newly developed method [3].

The Faddeev equations in coordinate space are solved
by use of an expansion in a complete set of generalized
angular functions

+ = gP ' 'f.( )IK( I&), (1)
n

where %" and 4„are three-component wave functions that
depend on a set of Jacobi coordinates, i.e., an angular

set denoted 0 and the effective radial coordinate p
(hyperradius) defined as p2 = g, , A; r; in terms of mass
numbers A; and coordinates of the particles r; in the
c.m. frame. The functions 4„are for each p chosen
as the eigenfunction of the angular part of the Faddeev
equations [3]. The corresponding eigenvalue k„(p) enters
as an effective potential in the system of coupled radial
equations

8 2mE A„(p) + 15/4l
(ap2 S2

'
= gC-f. (p), (2)

where m is the nucleon mass, E is the total energy,
and the matrix elements of the nondiagonal (operator)
terms are denoted by C„„. When at least two of the
scattering lengths a; are infinite the lowest eigenvalue A

will asymptotically approach a negative constant A" &
0, which gives rise to an attractive p potential with
an infinite number of bound states. If the scattering
lengths are large, but finite, A(p) remains close to A"
up to p = g a;, where it starts to deviate and eventually
either approaches zero as —16/ a;/m p (no binary bound
state) or diverges parabolically as —2m[E, [p2/82 (binary
bound state of energy E,) [3]. If only one of the three
scattering lengths is infinitely large then the lowest A also
approaches a negative constant, although in this case the
absolute value of the constant is too small to produce an
infinite number of bound states.

Long-range repulsive interactions hinder the effect.
This is true in particular for the Coulomb potential
in nuclei that gives a positive contribution to A(p
~) ~ p so that the effective potential eventually will be
repulsive at large distances. This does not mean that
the Coulomb potential strictly excludes the occurrence
of these peculiar states, but there will be only a finite
number of them. Relative angular momenta also led
to positive contributions to A(p ~ ~) and therefore also
decreases the probability of finding these states. Thus
the most promising nuclear candidates must consist of
two neutrons in zero angular momentum states around a
core nucleus. These three "particles" must behave like
a three-body system and therefore at most only weakly
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involve the core degrees of freedom. These requirements
are also the conditions for the occurrence of two-neutron
halo systems.

The neutron-neutron interaction is rather well known
[5]. Since only the low energy properties are im-

portant [6], we shall use a simple attractive central
potential of Gaussian form, which reproduces the mea-
sured s-state scattering length and effective range, i.e.,

(—31 MeV) exp( —[r/(1.8 fm)]2) [7]. The neutron-
core potential is also assumed to be Gaussian, i.e.,
—S,„exp[—[r/(2. 55 fm)]2}. We shall use a notation
~here the selected binary subsystem is labeled by x and
the last particle's motion relative to the center of mass
of the x system is labeled by y. Spin, orbital, and total
angular momentum are denoted, respectively, by S, L,
and J. Our neutron-core potential is spin independent,
and we therefore assume a spin-zero core. We shall
furthermore consider positive parity and total angular
momentum J = 0, which are supposed to be the most
favorable conditions for finding the Efimov effect.

The neutron-core two-body system is first investigated
as function of the strength S,„. The scattering length
is computed for each potential and the angular part of
the three-body problem is solved. Eigenvalues A„(p) and
wave functions 4„are obtained for p values up to 20
times the largest scattering length. The resulting lowest
lying eigenvalues are shown in Fig. 1 as a function of p
for a neutron-core potential with one slightly bound state
with the binding energy B,„=40 keV. We recognize
the hyperharrnonic spectrum at p = 0 as A„= K(K + 4)
where K = 2n is a non-negative even integer [8]. The
odd integers are connected with odd parity. At large p the
convergence towards the same spectrum is clearly seen for
the curves number 3, 4, and 6, whereas the curves number

1, 2, and 5 have just started to bend over, respectively,
towards the parabolic (—p2) divergence, 0 and 32. The

slow divergence of the lowest eigenvalue is the signature
of a barely bound state in the neutron-core potential.

The radial equation (2) is now solved and the re-
sulting energies for the ground state and the first
excited state are shown in Fig. 2 as function S,.„. The
two- and three-body systems are bound, respectively,
for S,„&9.510 MeV or S,„&6.6 MeV. Extremely
close to the two-body threshold, but still before
(S,„=9.505 MeV), appears the first excited three-body
state, where the neutron-core scattering length is about
18000 fm. Infinitely many bound states appear, one
after the other, when S,„ is increased from 9.505 to
9.510 MeV. The closer we are to the two-body threshold
the larger is the number of bound states. This narrow
region could be called the Efimov region.

The convergence of the A expansion in Eq. (1) is very
fast for both ground and excited states. For the Gaussian
potentials the first A already provides good accuracy. The
contribution f[fz(p)~~dp to the norm of the total wave
function from the second A is about 0.1%. The second A

changes the binding energy by about 2% compared to the
result when only the lowest A is included.

The binding energy of the first excited state increases
until the state disappears into the two-body continuum at
S,-. = 11.9 Me V, where the neutron-core scattering length
is about —15 fm. Therefore, the one-neutron separation
energy for this state (Bi —B,„) will first increase and
then decrease as the potential strength is increased. Note
that the states preferentially occur for bound neutron-core
systems. The ground state wave function is concentrated
in the pocket region near 4 fm. The excited state has,
unlike the ground state, a node in the radial wave function,
which is peaked at p values far larger than the ranges of
the nuclear potentials. Consequently, the ground state and
the first excited state are orthogonal, although they both
have the same angular momentum quantum numbers.
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FIG. 1. The six lowest lying angular eigenvalues A as func-
tion of p for a neutron-core Gaussian potential, strength S,„=
10.7 MeV and range parameter 2.55 fm, corresponding to one
slightly bound state of binding energy B,„=40 keV. The core
mass is 9 times the nucleon mass.

FIG. 2 Binding energies of the two-body ground state (8,„
solid curve) and the first excited state (Bi dashed curve) of the
three-body system as functions of potential strength S,„. The
inset also includes the three-body ground state (8o long-dashed
curve). The core mass is 9 times the nue1eon mass.
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The mean square hyperradius of the first excited state
is shown in Fig. 3 as a function of an energy, which
is defined as the one- or two-body separation energy
above and below the two-body threshold, respectively.
Close to the three-body threshold the mean square radius
should obey the three-body asymptotics, i.e., go as a
logarithm of the three-body binding energy [6]. This
occurs outside the range shown in the Fig. 3. When the
binding energy increases towards about 2 keV, the mean
square hyperradius decreases to about 104 fm2. Then both
turn around until the excited three-body state disappears
into the two-body continuum. The mean square radius has
reached here the asymptotic region and scales inversely
with energy [6].

We considered a spin-zero core and included
components of orbital angular momentum less
than or equal to two in each binary subsystem.
In the neutron-neutron subsystem we included

(L,L», L, S„S»,S) = (0, 0, 0, 0, 0, 0) and (2, 2, 0, 0, 0, 0),
which are compatible with the Pauli principle,
L„,Ly» 2, positive parity, and the total J = 0. For
the neutron-core subsystem, where S„=S» = 1/2,
we included (L„L»,L, S„S»,S) = (0, 0, 0, 1/2, 1/2, 0),
(1, 1,0, 1/2, 1/2, 0), and (2, 2, 0, 1/2, 1/2, 0). The antisym-
metric neutron-neutron states were obtained by proper
linear combinations. The states with L = S = 1 are not
included, since they, in the absence of spin-orbit forces,
are decoupled from the L = S = 0 states. The set of po-
tentials used here, spin independent attractive Gaussians,
provides binding energies with an accuracy of about 5%
by inclusion of only the L = Ly = 0 components.

When the core has a nonzero spin S„a number
of different structures are possible due to the two an-

gular momenta arising from coupling of the neutron
and core spins, which in turn couples to the other

U

(D
CL

0.5 1

Binding energy, keV

FIG. 3. The mean square hyperradius (p2) of the three-body
system as function of an energy defined as the one- or two-
neutron separation energy above and below the two-body
threshold, respectively. The arrow indicates the direction of
increasing potential strength. The core mass is 9 times the
nucleon mass.

neutron spin. An interesting illustrative example is
S, = 3/2 with the corresponding neutron-core relative
s-state angular momenta J,„=1, 2 and J = 1/2, 3/2.
The minimum number of cotnponents for J = 3/2 is
then (L„,L», L, S„S»,S) = (0,0, 0, 0, 3/2, 3/2) for the
neutron-neutron subsystem and (0, 0, 0, 1, 1/2, 3/2) and

(0, 0, 0, 2, 1/2, 3/2) for the neutron-core system. For
J = 1/2 we need instead at least (1, 1,0, 1, 3/2, 1/2)
for the neutron-neutron and (0, 0, 0, 1, 1/2, 1/2) for the
neutron-core subsystems. The case of J = 1/2, where

only J,„= 1 enters, necessarily excludes the most favor-
able configuration of L„=Ly = 0 in the neutron-neutron

subsystem.
When J = 3/2 both J,„=1, 2 are possible and the

neutron-core interaction might depend on the coupling.
The two-body threshold could then be split into two
separated thresholds. Each would, without the coupling
to the other, correspond to the picture exhibited in Fig. 2.
The inevitable coupling of the J,„=1, 2 states effectively
amounts to averaging these two-body states in the three-

body solution. Thus Efimov states are hindered when the
difference between the two thresholds is so large that
the individual regions of appearance do not overlap, see
the dashed line in Fig. 2.

It is the neutron-core scattering length which deter-
mines the effective radial potential A(p) for distances
larger than the characteristic radius of the neutron-core
potential (=3 fm). A spatially extended system like the
neutron halo nucleus resides mostly in the outer region of
the effective potential and is then mainly sensitive to the
low energy properties of the two-body potential.

The effect of the unknown particular shape of the
neutron-core potential at short distances is larger for the
states which have larger probability at short distances.
We can thus expect that the binding energy of the
ground state might decrease when the potentials with
repulsive cores are used. The first excited state having
little density at small distances must be less affected. The
binding energy of the ground state of the two-neutron
halo nucleus, where the Efimov effect might be present,
is then expected to be somewhat less than the value of
1 MeV given by the pure attractive Gaussian neutron-core
potentials.

The investigations have concentrated on a system of
two neutrons outside a core nucleus of mass 9. However,
for given scattering length in the neutron-core system we
find that increasing the core mass essentially leaves the
properties of the three-body system unchanged. Thus no
special place along the neutron drip line is favored.

What are then the chances of actually observing an
Efimov state in a nucleus~ We need to have a neutron
s state, corresponding to either the ground state or an
excited state, close to the threshold in the neutron-core
system. The first obvious place to look for Efimov states
is thus among nuclei with the outer neutrons in the sd
shell. One candidate is ' Be since recent calculation [9]
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indicates that the s level in ' Be is placed very close
to the neutron threshold. The next s orbitals cross zero
energy at mass numbers about 50 and 160 for beta-stable
nuclei, but the level density is there so large that it is
doubtful whether the core and halo degrees of freedom
can be separated. It is only in light nuclei that both the
neutron separation energy is small and the level density is
low. Even here there is a lack of spectroscopic data, but
among the promising systems are, e.g. , the nuclei ' C and
' C that have neutron separation energies of 729 ~ 18 and
160 ~ 110 keV, respectively, and are expected to have a
low-lying 1/2+ state. Efimov states might then appear
just below the one-neutron thresholds in ' C and C. The
neutron rich oxygen isotopes would also be a possibility,
but our knowledge about these nuclei is even smaller at
the moment.

In conclusion, the neutron halo nuclei are suggested
as a new type of system where the Efimov effect might
occur. We argue that the most promising place in nuclei
to look for the Efimov effect would be in a system where
one neutron is added to a pronounced one-neutron halo
nucleus. Our calculations show that the radial extension
of the first excited state is very large, at minimum about
100 fm with a corresponding binding energy about 2 keV.
This happens when there is a weakly bound state in

the neutron-core subsystem corresponding to a scattering
length of —20 fm. These properties presumably provide
the best conditions for the extremely difficult production
of nuclear Efimov states.
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