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The most general form for radial potentials with the same phase shifts as a given real potential
but arbitrarily different bound spectra is derived with a sequence of supersymmetric factorizations.
The wave functions of the phase-equivalent potentials are expressed analytically in terms of the wave

functions of the original potentia1.

PACS numbers: 03.65.Nk

Describing physical problems in terms of a local
potential is useful in many branches of physics [1,2].
When these potentials possess bound states, they are not
uniquely determined by scattering properties [3,4]. In
order to avoid physical ambiguities raised by apparent
differences, it is important to dispose of all possible forms
for the potentials equivalent to a given potential. In this
Letter, we solve this problem for a real potential in the
radial equation.

In the radial case, for a given partial wave, phase-
equivalent potentials possess the same phase shifts at all

energies. They are not allowed to be singular except
possibly at the origin. Phase equivalence already imposes
qualitative conditions through the Levinson theorem. For
nonsingular potentials, the number of bound states cannot
change. When the spectrum is fixed, the most general
expression f'or phase-equivalent potentials is available
in textbooks [4]. However, even when the number of
bound states is conserved, more general types of phase-
equivalent potentials exist where the energies of the
bound states are modified [5]. In addition, no strict
physical rule prevents a potential from being singular
at the origin. This opens the way to new classes of
phase-equivalent potentials [6] which satisfy a generalized
version of the Levinson theorem [7]. This is certainly
not an academic problem. In spite of their simplicity,
deep real potentials with nonphysical bound states provide
very accurate phase shifts in nuclear [8] or atomic [9]

physics. Removing [6] or moving [5] the bound states of
these potentials is possible in a way which modifies off-
shell properties [10] but not the phase shifts. This raises
questions about the nature of the most suitable potential
for a given application.

Supersymmetry [11]offers a simple approach to spec-
trum modifications. Sukumar has classified the different

types of supersymmetric transformations [12], but with-

out insisting on phase equivalence. One of us has shown
that a pair of supersymmetric factorizations allows remov-

ing a bound state without affecting the phase shifts [6].
This solved an old ambiguity problem in a + n scatter-
ing. This initial result received several generalizations.
Removing and adding bound states were considered in
Refs. [13] and [14]. An important step occurred recently
with the realization that a condition on supersymmetric
factorizations (the "no-node" condition explained below)
is not necessary for pairs of transformations [15]. This
allows us now not only to consider the most general form
of phase equivalence, but also to simplify considerably the
analytical treatment. Indeed the following presentation is
short and elementary while essentia11y self-contained.

Let us start with the Hamiltonian

d
Hp = — + vp(r) .

dl"
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The potential Vp is allowed to be singular at the origin in
the following way

(]]
gi = (%o ) g() gp dt

n(n + 1)
Vo r (2)

where n is a non-negative integer. It may contain
Coulomb and centrifugal terms. We shall denote as po(r)
the real solution of the Schrodinger differential equation
at some arbitrary energy E, which is bounded at infinity.
This solution may represent a physical bound state when
E belongs to the bound spectrum of Ho (in that case, it is
assumed to be normalized to unity) or a scattering wave
function when E is positive. Physical wave functions of
Ho behave as r"+' near the origin. The function po(r)
may also represent nonphysical solutions which do not
vanish at the origin, when E is negative and does not
belong to the bound spectrum. These conventions will
also be valid for all the other Hamiltonians encountered in
this work (with subscripts different from 0).

We consider some arbitra~ negative energy E"' and
A)the corresponding solution pp of the Schrodinger equa-

tion (1). The initial Hamiltonian Ho can be factorized
[12) as

The operators A~ and A~ = (AI+) are given by [13]

A, = —+ —In[go] P++ d d
dr dr

/

go dt, (9)

where the real parameter P is defined below. The super-
symmetric partner of H] is

as verified directly. For E 4 E"',
C, 7) can also be proved

by starting from the eigensolution Ap pp of H]. At this
stage, we do not care about normalization. With (7), one
can check that the phase shifts are modified. Moreover,

(1}for E = E"', one easily shows that p] does not vanish at
the origin and therefore that the bound state is suppressed

(]} .
when yp is physical.

Following Ref. [6], we now introduce a second factor-
ization,

Hp = Ap Ap + E('}, H~ =A, A, + EI" = — + Vp(r),dr2 (10)

where the linear differential operators Ap and Ap read with the potential

A, = (A, ) = —+ —
Intro

+ — t d d
dr dr

The supersymmetric partner H& of Hp is defined as

(4) d' (V2=Vo21nl P+
dr&

( I)2

)
dt

2

HI = Ao Ao + E = + VI(r),(i) d
dr

with the potential

(])
V) = Vp —2 lnpp

dr

This potential will be phase equivalent to Vp and have
no singularity at finite distances [15], provided that P is
defined by

—1 (a: E"' physical for Ho),P=. a (b: Etl~ nonphysical for Ho), (12)
u/(I —n) (c: E"' physical for Hp),

This Hamiltonian possesses the same bound spectrum

as Hp, with the possible exception of E '. When cpp

is physical, the energy E ' is "suppressed"; otherwise,
the bound spectrum remains unchanged [12]. These
properties can easily be observed on the wave functions
derived below. The potential V~ is singular at finite

distances except when pp is nodeless, i.e., when E ')

is lower than or equal to the ground-state energy of
Hp. This leads to the no-node condition imposed on
supersymmetric transformations [6,12,14].

The solutions corresponding to H] are related to those
of Hp by

where n is an arbitrary positive parameter. The fate of
the bound state at energy E~" differs in cases (a) and

(c) according to the value chosen for P. In case (a),
the suppressed bound state remains suppressed after the
second factorization. In case (b), a new bound state
is introduced at energy E~') and a parameter appears
III tlM poteIltlal. II1 case (c), file second factorlzatlon
reintroduces a bound state at energy E~') so that the bound
spectrum remains unchanged after the two successive
transformations, but a parameter is introduced in the
potential. One easily obtains (c) by combining (a) and
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—1j2 (1) (l)2
' go —Po P + Po

r

(1)X PO qPdt,
r

(13)

with 3V«l = 1, except when E is equal to E(') and the
solution y2 is physical, where

1) = A'. (14)

(b) [14]. The important point is that V2 is not restricted

to cases where happ is nodeless [5,15].(1

The corresponding solution at energy E reads

d 2
(N —1)

v2N = v2 —2 21n detx2
dl"

(17)

(N —1)
The elements of X2 are given by (15) with the
subscript 0 replaced by 2 for i,j varying from 2 to
N. With (13), a simple integration provides

Particular cases discussed in Refs. [14] and [15] are
unified by this expression. Equation (11) shows that (16)
is valid for N = 1. We now prove that if (16) is valid
for some value N —1, it is still valid for the next value
N. Let us apply to potential V2 a set of modifications at
the N —1 energies E~2~ to E N . Then, (16) is applicable
and V2N reads

This is established by introducing (7) in A& p~ and
normalizing if necessary. One can also verify that, at

energy E('~, p2 is bounded and normalized in cases (b)
and (c) while it does not vanish at the origin in case
(a). Let us emphasize that (13) is valid at all energies
for physical and nonphysical solutions of (10), bounded
at infinity. This formula, (11) and (12), summarizes
Eqs. (13) to (16), (19) to (22), and (24) to (27) of
Ref. [14]. The fact that the phase shifts are not modified
is easily seen in (13). Indeed, p2 differs from pp by a
term which is obviously short ranged.

Now we can attack the general case. Let us consider
a set of N distinct but otherwise arbitrary negative
energies Et'~ (i = 1, . . . , N) At thes.e energies, we wish
to suppress existing bound states, add new bound states,
or modify only the potential without removing the state.
Since these energies are arbitrary, the order in which they
are classified is irrelevant. We consider a succession of
N potentials V2;, phase equivalent to Vp, where some
property is modified at energy Et'l [a parameter u; defined
in (12) is also associated to modification i] With .such
a chain of potentials, any modification of the bound
spectrum can be reached. The behavior of (13) at small
r values easily shows that the parameter a; can modify
in an arbitrary way the normalization constant C; [4] of
the bound state at energy E('~ (if it is not suppressed)
without affecting the C, of the other states. Hence, the
most general form of phase-equivalent potentials can be
obtained. We now derive it.

Following Refs. [14] and [15],a matrix Xp of order N
(N)

is defined, whose elements read for i, j = 1, . . . , N,

(t'j ) (i j ) & ~(11)& 1 (t'1) (1 j)

With the single determinant property derived in the
appendix of Ref. [14],one deduces from (18)

detX = [X ' ] 'detX (19)

Combining (17), (11),and (19)proves the validity of (16).
Notice that the singularity of V2N at the origin differs from
the singularity of Vp [Eq. (2)], according to the variation
of the number of bound states. The condition n ) 0 for
V2N limits the possibility of adding bound states to the
spectrum of Hp [5].

A similar treatment provides the solutions, bounded at
infinity, of the Schrodinger equation associated with V2N

at an arbitrary energy E (positive or negative) as

—1/2 (N) 1 (N)
lv&[detXp ] detYp (happ), (2o)

(i,j)
Wp

{i)
PO

.f, po Fodt(j)

(i,j = 1, . . . , N),

(i = 0, . . . , N; J = o),
(i =0 j= 1, . . . , N),

(21)

where 3V&~ N&
= 1 except when E is equal to one of the

E('& where it is equal to u; [see (14)]. The elements of
matrix Yo (pp) of order N + 1 are defined by

(N)

(t' j) (t) ( j)
Xo = 13i~p + Fo Fo dt,

r
(15)

where pp is the solution at energy F ' . The final
(i)

potential V2N is given by

with po: pp. The proof of (20) follows exactly the
(o)

same pattern as the proof of (16). Equation (13) shows
that it is valid for N = 1. Let us apply (20) to the
determination of cp2N as a function of the solutions
associated with V2.

d' {N)
v2N = vp —2 1n detxp

df'
-1j2 (N —1) 1 (N —1)

p2N = 3Vp Nl[detX2 ] detY2 (p2) . (22)
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Equations (18) and (13), and a simple integral also
involving (13), lead to &(r t) = g i3; V o (r)Vo (t) (30)

I'2" (~c~) = ~i&) (I'o'(Vo) —Pio' ]

&& I'o' (Po)yo
'

(Po)] (23)

An alternative expression for K involving initial and final
states reads

for i, j = 2, . . . , N. Hence, one has
I

K(r t) g P cti %2N(r)po (t) .

detl'z (p2) W[i) [K0 ] det I'0 ('po) (24)

d
V2~ = Vo + 2 K(r, r),

df'
(25)

which, with (19) and (22), proves (20). When E = E'I, po
is equal to the corresponding po, and detl'o (po ) can(0 (N) (i)

be reduced to the determinant of a N x N matrix by
subtracting row i from the similar row 0. One obtains
a generalized version of Eqs. (43) and (64) in Ref. [14]or
of Eqs. (19) and (22) in Ref. [15].

The potential V2jv can be recast in a form similar to
those encountered in the paper of Abraham and Moses
[16]. These authors address the same problem but on the
line. They derive equivalent local potentials from integral
kernels obtained by solving equations of the Gelfand-
Levitan type. Abraham and Moses propose an algorithm
to solve their integral equation but do not provide an
explicit solution. Equation (16) can be rewritten as in

Ref. [16],

The factor n; arises from the normalization convention
adopted here. The present expressions generalize those of
Refs. [5] and [15] in several respects: all forms of phase
equivalence are now included and (26) is valid for both
physical and nonphysical solutions.

In summary, the most general form of phase-equivalent
potentials for arbitrary bound spectra is obtained in closed
form with simple calculations. The expressions are valid
for a class of potentials without singularities except at the
origin, including possible Coulomb and centrifugal terms.
We not only generalize and unify earlier works, but also
significantly simplify the presentation and the proofs. The
main origin of the simplification is the disappearance
of the no-node condition for pairs of supersymmetric
factorizations [15]. The expressions are established here
for the radial problem, but a similar treatment of the line
problem is possible and is in progress.

and Eq. (20) can be expanded in a form where the same
kernel appears, as

—i/2
'P2+ ~(1,...,N) mpo K(r t)'Po(t) dt '

r
(26)

In these expressions, the kernel K is defined explicitly as

K(r, t) = —[detXo (r)] 'detZo (r, t), (27)

where the elements of the (N + 1) && (N + 1) matrix Zo
(N)

are given by
x(, )( )

. po (r)(i)

0
tto (r)
0

(i, j = 1, . . . , N),

(i =1, . . . , N;j =0),
(i =0 j= 1, . . . , N),
(i = j=O).

(28)

K(r, t) = Q(r, t)— K(r, u)A (u, t) du, (29)

with

With the determinant property (25) of Ref. [15], one
easily shows that this kernel is a solution of the integral
equation, similar to the equation of Abraham and Moses
for the line problem,
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