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The most general form for radial potentials with the same phase shifts as a given real potential
but arbitrarily different bound spectra is derived with a sequence of supersymmetric factorizations.
The wave functions of the phase-equivalent potentials are expressed analytically in terms of the wave

functions of the original potential.
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Describing physical problems in terms of a local
potential is useful in many branches of physics [1,2].
When these potentials possess bound states, they are not
uniquely determined by scattering properties [3,4]. In
order to avoid physical ambiguities raised by apparent
differences, it is important to dispose of all possible forms
for the potentials equivalent to a given potential. In this
Letter, we solve this problem for a real potential in the
radial equation.

In the radial case, for a given partial wave, phase-
equivalent potentials possess the same phase shifts at all
energies. They are not allowed to be singular except
possibly at the origin. Phase equivalence already imposes
qualitative conditions through the Levinson theorem. For
nonsingular potentials, the number of bound states cannot
change. When the spectrum is fixed, the most general
expression for phase-equivalent potentials is available
in textbooks [4]. However, even when the number of
bound states is conserved, more general types of phase-
equivalent potentials exist where the energies of the
bound states are modified [5]. In addition, no strict
physical rule prevents a potential from being singular
at the origin. This opens the way to new classes of
phase-equivalent potentials [6] which satisfy a generalized
version of the Levinson theorem [7]. This is certainly
not an academic problem. In spite of their simplicity,
deep real potentials with nonphysical bound states provide
very accurate phase shifts in nuclear [8] or atomic [9]
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physics. Removing [6] or moving [5] the bound states of
these potentials is possible in a way which modifies off-
shell properties [10] but not the phase shifts. This raises
questions about the nature of the most suitable potential
for a given application.

Supersymmetry [11] offers a simple approach to spec-
trum modifications. Sukumar has classified the different
types of supersymmetric transformations [12], but with-
out insisting on phase equivalence. One of us has shown
that a pair of supersymmetric factorizations allows remov-
ing a bound state without affecting the phase shifts [6].
This solved an old ambiguity problem in @ + a scatter-
ing. This initial result received several generalizations.
Removing and adding bound states were considered in
Refs. [13] and [14]. An important step occurred recently
with the realization that a condition on supersymmetric
factorizations (the ‘“no-node” condition explained below)
is not necessary for pairs of transformations [15]. This
allows us now not only to consider the most general form
of phase equivalence, but also to simplify considerably the
analytical treatment. Indeed the following presentation is
short and elementary while essentially self-contained.

Let us start with the Hamiltonian

2

Ho = =5 + V(). (1)

© 1994 The American Physical Society 2789



VOLUME 73, NUMBER 21

PHYSICAL REVIEW LETTERS

21 NOVEMBER 1994

The potential V, is allowed to be singular at the origin in
the following way

nn + 1)

2
re

Vo(r) =

r—Q0

(2)

where n is a non-negative integer. It may contain
Coulomb and centrifugal terms. We shall denote as ¢(r)
the real solution of the Schrodinger differential equation
at some arbitrary energy E, which is bounded at infinity.
This solution may represent a physical bound state when
E belongs to the bound spectrum of Hy (in that case, it is
assumed to be normalized to unity) or a scattering wave
function when E is positive. Physical wave functions of
Hy behave as r"*! near the origin. The function @o(r)
may also represent nonphysical solutions which do not
vanish at the origin, when E is negative and does not
belong to the bound spectrum. These conventions will
also be valid for all the other Hamiltonians encountered in
this work (with subscripts different from 0).

We consider some arbitral?' negative energy E'Y and
the corresponding solution <p01) of the Schrodinger equa-
tion (1). The initial Hamiltonian Hy can be factorized
[12] as

Hy = AjA, + EW, 3)
where the linear differential operators Ag and A, read

_ d
Ay = @A)t = Ingg . (4)

— +
dr

4
dr
The supersymmetric partner H; of H, is defined as

-

_ d*
H, = Ay A§ +E(1)=~W+V1(V)- (5)

with the potential

o w
V1 =Vy — ZE"_ZII'KD() . (6)

This Hamiltonian possesses the same bound spectrum
as H,, with the possible exception of E). When qoén
is physical, the energy E(" is “suppressed”; otherwise,
the bound spectrum remains unchanged [12]. These
properties can easily be observed on the wave functions
derived below. The potential V; is singular at finite
distances except when @) is nodeless, i.e., when E®
is lower than or equal to the ground-state energy of
Hy. This leads to the no-node condition imposed on
supersymmetric transformations [6,12,14].

The solutions corresponding to H, are related to those
of H, by

2790

1), — ” Il
@1 = (@) 'f o0 wodt . (7)

as verified directly. For E # E''. (7) can also be proved
by starting from the eigensolution A, ¢ of H,. At this
stage, we do not care about normalization. With (7), one
can check that the phase shifts are modified. Moreover,
for E = E, one easily shows that go(ll) does not vanish at
the origin and therefore that the bound state is suppressed
when go(()” is physical.

Following Ref. [6], we now introduce a second factor-
ization,

H = A7A] + E". (8)

The operators A, and A; = (A )! are given by [13]

+ d d _ ” 2 .
Al = ot ;17111{[90(()”] ’[B + [ 0’ df”. 9

where the real parameter g is defined below. The super-
symmetric partner of H, is

-
pa

Hr = A AN + EV = — + Va(r), (10)
1 1

dr?

with the potential
d? *ap
V2=V0~2—~lnﬁ+ ©o dt |. (]l)
dr? r

This potential will be phase equivalent to V, and have
no singularity at finite distances [15], provided that 8 is
defined by

-1 (a: EY physical for Hy),
B=1a (b: E™ nonphysical for Hp), (12)
a/(1 — a) (c: EY physical for Hy),

where a is an arbitrary positive parameter. The fate of
the bound state at energy EV differs in cases (a) and
(c) according to the value chosen for B. In case (a),
the suppressed bound state remains suppressed after the
second factorization. In case (b), a new bound state
is introduced at energy E!" and a parameter appears
in the potential. In case (c), the second factorization
reintroduces a bound state at energy £V so that the bound
spectrum remains unchanged after the two successive
transformations, but a parameter is introduced in the
potential. One easily obtains (c) by combining (a) and
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(b) [14]. The 1mgortant point is that V, is not restricted

to cases where ¢q  is nodeless [5,15].
The corresponding solution at energy E reads

I -1
~1/2 m (2
¢2=-'N{l}/[¢0“¢o [B*‘/ dt]
)
Xf ®o podty,
.

with N3 = 1, except when E is equal to E") and the
solution ¢, is physical, where

(13)

Ny = a. (14)

This is established by introducing (7) in A; ¢; and
normalizing if necessary. One can also verify that, at
energy EW, #." is bounded and normalized in cases (b)
and (c) while it does not vanish at the origin in case
(a). Let us emphasize that (13) is valid at all energies
for physical and nonphysical solutions of (10), bounded
at infinity. This formula, (11) and (12), summarizes
Egs. (13) to (16), (19) to (22), and (24) to (27) of
Ref. [14]. The fact that the phase shifts are not modified
is easily seen in (13). Indeed, ¢, differs from ¢o by a
term which is obviously short ranged.

Now we can attack the general case. Let us consider
a set of N distinct but otherwise arbitrary negative
energies E¥ (i = 1,...,N). At these energies, we wish
to suppress existing bound states, add new bound states,
or modify only the potential without removing the state.
Since these energies are arbitrary, the order in which they
are classified is irrelevant. We consider a succession of
N potentials V5;, phase equivalent to V,, where some
property is modified at energy E) [a parameter «; defined
in (12) is also associated to modification i]. With such
a chain of potentials, any modification of the bound
spectrum can be reached. The behavior of (13) at small
r values easily shows that the parameter a; can modify
in an arbitrary way the normalization constant C; [4] of
the bound state at energy E® (if it is not suppressed)
without affecting the C; of the other states. Hence, the
most general form of phase-equivalent potentials can be
obtained. We now derive it.

Following Refs. [14] and [15], a matrix XéN) of order N
is defined, whose elements read for i,j = 1,...,N,

( ) © . .

V= psy+ [ el an, (15)
where ¢ is the solution at energy EY). The final
potential V,y is given by

Vv = Vo — 2 = ln detxg". (16)

Particular cases discussed in Refs. [14] and [15] are
unified by this expression. Equation (11) shows that (16)
is valid for N = 1. We now prove that if (16) is valid
for some value N — 1, it is still valid for the next value
N. Let us apply to potential V, a set of modifications at
the N — 1 energies E® to E™). Then, (16) is applicable
and V,y reads

(N— 1)

d?
VZN—V2—2—lnd etX; V)

The elements of Xi' ' are given by (15) with the

subscript 0 replaced by 2 for i,j varying from 2 to
N. With (13), a simple integration provides

(.5 _ (t )

X2 [X(l l)] X(l 1) (1 J) (18)

With the single determinant property derived in the
appendix of Ref. [14], one deduces from (18)

(N=1)

detx?V 7V = [x§""1 ' detx (M (19)

Combining (17), (11), and (19) proves the validity of (16).
Notice that the singularity of V,y at the origin differs from
the singularity of V, [Eq. (2)], according to the variation
of the number of bound states. The condition n = 0 for
Von limits the possibility of adding bound states to the
spectrum of Hj [5].

A similar treatment provides the solutions, bounded at
infinity, of the Schridinger equation associated with Vyy
at an arbitrary energy E (positive or negative) as

(N)

IdetXd" T detys (00),  (20)

.....

E® where it is equal to a; [see (14)]. The elements of
matrix YO (<p0) of order N + 1 are defined by

(i,j) X(()"J) (l’J = 1,-..,N),
Y0’=J - ‘P(()') (i=0,...,N;j=0), 21
G
[ie godt (i=01j =1,....N),

with <p(()0) = ¢o. The proof of (20) follows exactly the
same pattern as the proof of (16). Equation (13) shows
that it is valid for N = 1. Let us apply (20) to the
determination of ¢,y as a function of the solutions
associated with V;:

Toldexy VT detrsY V(gy).  (22)
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Equations (18) and (13), and a simple integral also
involving (13), lead to

(lj) -1/2

Yo (00) — [x6""]""

x Y5 (o)Yo (go)}  (23)

(p2) = Ny

fori,j = 2,...,N. Hence, one has

(N=1)

detrs" (@2) = Ny P1x 1 ety (@o)  (24)

which, with (19) and (22), proves (20). When E E

is equal to the corresponding qD(()), and detYO (<p0 ) can
be reduced to the determinant of a N X N matrix by
subtracting row i from the similar row 0. One obtains
a generalized version of Eqgs. (43) and (64) in Ref. [14] or
of Egs. (19) and (22) in Ref. [15].

The potential V,5 can be recast in a form similar to
those encountered in the paper of Abraham and Moses
[16]. These authors address the same problem but on the
line. They derive equivalent local potentials from integral
kernels obtained by solving equations of the Gelfand-
Levitan type. Abraham and Moses propose an algorithm
to solve their integral equation but do not provide an
explicit solution. Equation (16) can be rewritten as in
Ref. [16],

d
VQN:V0+2*K(T',V), (25)
dr

and Eq. (20) can be expanded in a form where the same
kernel appears, as

,,,,,

- fo(r,t)qoo(t)dt]. (26)

In these expressions, the kernel K is defined explicitly as

(V)

K(r,1) = —[detx$" ()] 'detzy" (r, 1), (27)

where the elements of the (¥ + 1) X (N + 1) matrix Z((,N)
are given by

x¢"(r) Gj=1,...,N),

(:) - Cio=
27 el (= LeN =0 gy
sao (ry (=0;j=1,...,N),
0 (i=j=0).

With the determinant property (25) of Ref. [15], one
easily shows that this kernel is a solution of the integral
equation, similar to the equation of Abraham and Moses
for the line problem,

x

K(r,t) = Q(r, 1) — j K(r,u)Q(u,t)du, 29

r

with

2792

N
= B ey (Nes (). (30)
i=1

An alternative expression for K involving initial and final
states reads

N
K(rop=> B la, esm(res (1), (31
i=1

The factor a,«] & arises from the normalization convention
adopted here. The present expressions generalize those of
Refs. [5] and [15] in several respects: all forms of phase
equivalence are now included and (26) is valid for both
physical and nonphysical solutions.

In summary, the most general form of phase-equivalent
potentials for arbitrary bound spectra is obtained in closed
form with simple calculations. The expressions are valid
for a class of potentials without singularities except at the
origin, including possible Coulomb and centrifugal terms.
We not only generalize and unify earlier works, but also
significantly simplify the presentation and the proofs. The
main origin of the simplification is the disappearance
of the no-node condition for pairs of supersymmetric
factorizations [15]. The expressions are established here
for the radial problem, but a similar treatment of the line
problem is possible and is in progress.

[1] Quantum Inversion Theory and Applications, edited by
H.V. von Geramb, Lecture Notes in Physics (Springer,
Berlin, 1993), Vol. 427.

[2] J.F. Schonfeld, W. Kwong, J.L. Rosner, C. Quigg, and
H.P. Thacker, Ann. Phys. (N.Y.) 128, 1 (1980).

[3] V. Bargmann, Rev. Mod. Phys. 21, 488 (1949).

[4] K. Chadan and P.C. Sabatier, Inverse Problems in
Quantum Scattering Theory (Springer, Berlin, 1977).

[5] D. Baye, in Quantum Inversion Theory and Applications,
edited by H.V. von Geramb, Lecture Notes in Physics
(Springer, Berlin, 1993), Vol. 427, p. 127.

[6] D. Baye, Phys. Rev. Lett. 58, 2738 (1987).

[71 P. Swan, Nucl. Phys. 46, 669 (1963).

[8] B. Buck, H. Friedrich, and C. Wheatley, Nucl. Phys.
A275, 246 (1977); V.I. Kukulin and V.N. Pomerantsev,
Prog. Theor. Phys. 88, 159 (1992).

[9] W. Ihra and H. Friedrich, Phys. Rev. A 45, 5278 (1992).

[10] D. Baye, P. Descouvemont, and M. Kruglanski, Nucl.
Phys. A550, 250 (1992); Q.K.K. Liu, Nucl. Phys. AS550,
263 (1992).

[11] E. Witten, Nucl. Phys. B188, 513 (1981).

[12] C.V. Sukumar, J. Phys. A 18, 2917 (1985); 18, 2937
(1985).

[13] D. Baye, J. Phys. A 20, 5529 (1987).

[14] L.U. Ancarani and D. Baye, Phys. Rev. A 46, 206 (1992).

[15] D. Baye, Phys. Rev. A 48, 2040 (1993).

[16] P.B. Abraham and H.E. Moses, Phys. Rev. A 22, 1333
(1980).



