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Exclusion Statistics: Low-Temperature Properties, Fluctuations, Duality, and Applications
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We derive some physical properties of ideal assemblies of identical particles obeying generalized
exclusion statistics. We discuss fluctuations and in this connection point out a fundamental contrast
to conventional quantum statistics. We demonstrate a duality relating the distribution of particles at
statistics g to the distribution of holes at statistics 1/g. We suggest an application to Mott insulators.
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Several years ago, Haldane [1]introduced the notion of
generalized or fractional exclusion statistics, interpolating
between bosonic and fermionic statistics. Motivated by the
properties of quasiparticles in the fractional quantum Hall
effect and in one-dimensional inverse-square exchange
spin chains, he defined the statistics g of a particle by

8g+5N 0N
(1)

AN
where N is the number of particles and tv is the dimen-
sion of the one-particle Hilbert space obtained by holding
the coordinates of N —1 particles fixed. Since any num-

ber of bosons can occupy a given state, d&+zN = dN, and
hence g = 0. By contrast, the Pauli exclusion principle
implies that g = 1 for fermions. Particles with intermedi-
ate statistics —Laughlin quasiparticles with g = 1/m and

1D spinons with g =
2 were the two examples given in

[1]—satisfy a generalized exclusion principle. Recently
Wu [2] has discussed the statistical mechanics of particles
obeying a generalized exclusion principle locally in phase
space (see below). Henceforth we shall call such particles
g-ons. Ouvry [3] had previously discussed a related sta-
tistical distribution in the context of anyons in a magnetic
field. Bernard and Wu [4] have shown that excitations
in the Calogero-Sutherland model obey this statistical me-

chanics. (For the exact interpretation of this statement, see
below. )

An earlier form of exotic statistics —anyons [5,6]—has

proved very influential in the study of two-dimensional
systems. Anyons are particles whose wave functions ac-
quire an arbitrary phase e'e when two of them are braided.
Unlike fractional exclusion statistics particles, anyons are
special to two dimensions since in higher dimensions two
exchanges can be continuously deformed to no exchange.
At first glance, exclusion statistics seem to have little
to do with the braiding properties of particle trajectories
which are the starting point for anyons. However, in a
recent important paper, Murthy and Shankar [7] showed
that anyons do satisfy a generalized exclusion principle
(contrary to Haldane [1]). They did this by relating the
exclusion statistics parameter g to the high-temperature
limit of the second virial coefficient, which is nontrivial

for an anyon gas [8]. The linchpin of their argument is
that in a theory with a high-energy cutoff (e.g., any con-
tinuum model), the transmutation of statistics by attach-

ing flux tubes [6] will generally push some states beyond
the cutoff, thereby reducing the Hilbert space dimension.
This generates a fractional exclusion statistics that persists
even as the cutoff is taken to infinity.

We now briefly recall the framework of g-on statistical
mechanics [1,2]. Following [9], we imagine dividing
the one-particle states into a large number of cells with
k && 1 states in each cell and then count the number
of configurations with n; particles in the ith cell. An

elementary combinatorial argument gives

s (d„+ n, —1)!
n '(dn —1)'

where d„,. is the dimension of the one-particle Hilbert

space in the ith cell with the coordinates of n; —1 of the

particles held constant. If one can apply the definition

(1) locally t'n phase space —a big assumption that we
tentatively adopt as the working definition of g-ons, but
will need to discuss critically and refine shortly —then

d„= k —g(n; —1).

Hence we must minimize the quantity

(3)

= (1 —g) ln[k + (1 —g)n;] —inn; + g ln(k —gn;)

—P(e —p)

S = g[k+ (1 —g) (n; —1)]ln[k+ (1 —g)(n; —1)]
—n; inn; —[k —g (n; —1) —1]

X ln[k —g(n; —1) —1] —Pe; n; + Pp n; (4),

with respect to the occupation numbers, n;; P and Pp,
are the Lagrange multipliers which enforce the constraints
of fixed energy and particle number. Differentiating with

respect to n;, we obtain [neglecting terms of O(1) which

are negligible compared to ln k],
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Upon exponentiation this yields

n;eP" " = (1 —gn;) [1 + (1 —g)n;]', (6)

where we have written n; = n;/k for short. This is the
fundamental equation that implicitly defines the distri-
bution function for g-ons. In general it can only be
solved numerically, but for special cases including g =
0, 1, 2, 2, 3, 3, 4, 4 it can be solved analytically. The g =

2
1 1 1 1

distribution function is

2

(I y 4e2P(~ I )))/2—'

Low-temperature properties. —At T = 0 the distribu-
tion function vanishes for e & p, and takes the value 2 at
e ( )M, . More generally, one can show by inspection of
(6) that at T = 0

(g)

It is quite striking that at T = 0 particles of general
exclusion statistics exhibit a "Fermi" surface. This fact
dictates the low-temperature thermodynamics of systems
of these particles when the particle number is conserved.

We can develop an expansion in powers of the tempera-
ture —analogous to the Sommerfeld expansion for fermi-
ons —for the thermodynamic functions of g-ons.

Let the single-particle energies be e(p) = ap". We
find, up to exponentially small corrections,

O/n
&T&"' &-I + D/n&

/Jo =p " 1+ g(D/n)y — . CJ
, &/) & i )''

(9)

( ) D/n+(

E = Ep
p

1 + g(1 + D/n)

k)") k i

where D is the spatial dimension, p, p and Ep are the zero-
temperature chemic@ potential and energy, respectively,
and we have isolated the pure numbers

(11)
In the special case g = 2, Co can be evaluated analyti-

cally. Using the distribution function (7), one finds rather
surprisingly

oo
1

p

(Co)g=)/2 =
J

du
)/2

+ du
( ))/2

1
"

du 1 1 f du / 1

2 2 v (1 + v~)'&2 2 Jo v ((1 + v2)'&~

Hence, the g =
2 specific heat to order T is simply

= (1+ Dln) 2 . (13)
EpC1

k T ) g=1//2 Pp
C) may be evaluated numerically; C) = 1.6449. In the
case of fermions C„=0 for all even n due to particle-hole

symmetry, but this is not the case for g = 2, specifically,
C2 = 1.2021. Remarkably, we find numerically that Co =

1 10 for g =
3 4 as well. These results —together with a

duality property to be demonstrated later which implies
that Cp = 0 for g = 2, 3, 4 as well —lead us to conjecture
that Cp = 0 for arbitrary g.

If the particle number is not conserved one has,
immediately,

dD
F = pe;n; = V e(p)ng(e(p))

2m. D

= aVT ~"+' dye ~"ng g, 14

where a ' = aD "+'m.D/22D 'I (D/2). For 2-ons with
D/n = 1, the integral in (14) takes the value 0.9870.

Fluctuations and a perspective on the assumptions. —
Let us attempt to find the probabilities for various

occupation numbers of a single state, for g = 2. Defining
f(n)e "p(' ~) as the probability for n-fold occupancy, we
derive from (7) the formal relation

gnf(n)e "« ~)-

g f(n)e nP(e Pa) —
[

—+ e2P(~ ~)]1/2
4

(15)

Matching coefficients and normalizing f(0) = 1 we
find f(l) = 1, f(2) = 2, f(3) = s, f(4) = 0, f(5) =

1—,28, . . . . Clearly something has gone awry here.
The mathematical problem is as follows. The dimension

of the many-particle Hilbert space

W = [k + (1 —g)(N —1)]!
N! [(k —1) —g (N —1)]! (16)

for N particles when the cell includes k states vanishes
at g = m/(N —1) where m = k, k + 1, . . . , k + N —l.
This gives the correct result for fermions, namely W =
0 if N ) k since g = 1 is then one of the zeros of
W. However, W does not vanish for general g when
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gN ) k. Indeed, W can be negative when gN ~ k. (To
see this, consider the simple case of g =

2 for N 0 2k
and N an even number. ) To get a sensible result for
the Hilbert space dimension W, we must stipulate that
W = 0 if gN ) k, which complicates the minimization of
the entropy. If we take a large cell size k we can safely
ignore this complication, since W is small for gN ~ k. For
instance, in the case of semions, the error in ignoring the
constraint W& = 0 for N ~ 2k is inversely proportional to
the cell size, namely

~ WN ~
( 1/2k for N ) 2k. Thus for

g-ons it is important to keep the cell size large, in contrast
to the Fermi and Bose cases where one could take k = 1

with impunity.
One must therefore exercise some care in using the

distribution functions derived from (6). The cell size
must not become too small in view of the preceding
paragraph, but it must also not become too large, because
if the energy spread within one cell becomes comparable
to the temperature, then the notion of a characteristic
energy for the cell becomes invalid. It is amusing
that negative probabilities appear in this problem in a
natural and meaningful way: It is necessary that negative
probabilities appear in the description of small cells, if
independent addition of many such is to generate the
correct average occupancy for large cells.

Our mathematical problem reflects a fundamental im-

plicit physical assumption in the derivation of g-on statis-
tical mechanics. For bosons or fermions the fundamental
assumption of symmetry or antisymmetry of the wave
function holds rigorously and locally in momentum space.
This is enough to allow one to derive the appropriate sta-
tistical distribution for an ideal gas locally in phase space.
To derive g-on statistical mechanics as above one must as-
sume that the generalized exclusion principle operates on
states of nearby energy, and as we have seen one must also
take a cell size not too small. Without attempting a rig-
orous discussion, we can identify qualitatively the physi-
cal circumstance under which these assumptions become
plausible. It is that the effective interaction which reduces
the Hilbert space dimensions should be essentially local in
momentum space. Then one may apply the counting ar-

guments to cells containing all the states in a small range
of momenta: This will be a number of states proportional
to the volume, all with essentially the same energy.

The known examples of g-ons have this charac-
ter. Ideal g-on statistical mechanics operates in the
Calogero-Sutherland models [4], which feature long-
range interactions. (Actually there is an important
subtlety here. The states of the Calogero-Sutherland
model are exactly classified in terms of occupa-
tion numbers of momentum states obeying ideal
g-on statistics. This is somewhat misleading, however,
because the relation between these momenta and the
energy of the state is complicated. In a gauge the-
ory formulation of the model [10] this complication
arises because the momenta used in the classifi-

cation are canonical momenta, ~hereas the energy
involves the kinetic momenta. The occupation numbers
as a function of momentum are just those of the ideal
g-on gas calculated with the energy-momentum relation
of free particles. However, the actual energies of the
corresponding one-particle states are complicated and
are determined, according to the thermodynamic Bethe
ansatz equations, by the condition that the g-on distri-
bution as a function of the free particle energy is equal
to the bosonic distribution as a function of the actual
energy [4]. Nevertheless, the thermodynamic quantities
are correctly calculated using the ideal g-on formulas. )

Anyon models [that is, (2 + 1)-dimensional systems
with a Chem-Simons gauge field] feature interactions
which are singular for nearby momenta, resulting in a shift
of the allowed values of the relative angular momentum
between two particles, I I + o. . Since two particles
occupying the same state must have vanishing relative
angular momentum, an anyon excludes its state from
further occupation. This is certainly local exclusion, but
the second condition is not satisfied: An anyon in any
other state also has its relative angular momentum shifted.
Hence anyons are not ideal g-ons, but interacting g-ons.
Whether the ideal g-on statistical mechanics provides
a useful first approximation in this case is a question
needing further investigation. Hard-core bosons on a
lattice have g = 1 according to Haldane's definition, but
are far from being 1-ons according to our definition, and
their behavior is poorly approximated by fermions: One
expects them to Bose condense rather than to form a
Fermi surface at low temperatures.

To conclude this discussion, let us finally display
the first-order fluctuations concretely, for g = 2. By
differentiating (15) with respect to the chemical potential

p and rearranging terms, we find

Thus we find that semions have sub-Poissonian statistics,
as do fermions (An) = n(1 —n). In contrast, bosons are
super-Poissonian, (An) = n(l + n)

Duality. We allud—ed earlier to a duality property that
relates statistics g and 1/g. It is

i —gn, (p(~ —g)] = —
nips

——(~ —v))

and is not difficult to verify. This duality relates the
distribution of holes in the g-on distribution (where full

filling is at ng = I/g) to that of 1/g-ons at g times the

temperature, or alternatively 1/g times the energy and
chemical potential.

This duality is reminiscent of the one found in Chern-
Simons models. There one describes anyons as charge

Q = q objects which acquire a proportional flux C) =
q/p, , where p, is the Chem-Simons coupling, and thereby
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have their statistics transmuted by 68/m. = QiIi = q~/p, .
The fundamental flux tubes then have flux 4 = 1/q,
charge Q = p, /q2, and the inverse statistics. The ther-
mal duality (18) is also reminiscent of the g 1/g dual-

ity in the Calogero-Sutherland models [11]. Indeed, for
these models thermal duality as discussed here follows
from the known coupling-constant duality. The concor-
dance of the general thermal duality for abstract g-on
statistics with the more specific and complete duality for
Calogero-Sutherland quanta vividly confirms the idea that
these models embody ideal g-on statistics, subject to the
subtlety noted above.

Remarks on the Mott problem. —As we have empha-
sized, the application of g-on statistics to one-dimensional
systems, even for the soluble models where it is formally
correct, is not straightforward. Indeed in one space di-
mension the application of Fermi statistics to derive the
low-energy properties of systems of fermionic quasipar-
ticles has to be carefully considered, since interactions
can change the properties qualitatively. The Fermi liquid
must be considered as one special case of the generic Lut-
tinger liquid [12]. Thus, for example, the thermodynamic
properties of edge excitations in the fractional quantized
Hall states are not correctly reproduced by the ideal g-on
formulas, even though the electrons are (for example) for-
mally m-ons in the p = 1/m state. Of course the bulk
filling fraction is nicely consistent with 1/g filling of the
magnetic band, but this is a tnuch weaker statement.

More speculative, but if correct probably more useful,
is the possibility of applications to systems in higher
dimensions. For in higher dimensions the phase space
arguments of Landau apply, as in his justification of
Fermi liquid theory, and make it plausible that (unlike in
one space dimension) the approximation of noninteracting
quasiparticles is accurate at low temperature.

There is a class of insulating materials, the Mott
insulators, which are anomalous from the point of view
of band or Fermi liquid theory. They are insulators when
their valence band is precisely half filled. From the point
of view of this paper, it is natural to hypothesize that in
these materials the electrons are behaving as 2-ons [13].
The most important qualitative feature of Mott insulators,
that is the existence of a gap at exactly half filling,
follows directly. Such behavior is suggested, but certainly
not proved, by the idea (formalized in the t Jmodel)-
that because of strong on-site repulsion a single electron
excludes two states —namely states of both spins —from
its lattice site. As we have taken pains to emphasize what
is needed is local repulsion in momentum space, which
could arise directly from a long-range force or indirectly
through correlation effects.

In any case, our hypothesis leads to the statistical-
mechanical consequences derived earlier, which could be
tested in experiments or by numerical work on models.
Most interesting are effects which arise just belo~ half
filling. The central consequence is the existence at T = 0
of a Fermi surface of anomalous size, and with anomalous

values of the specific heat, Pauli susceptibility, etc. There
are quantitative anomalies in the experimentally observed
normal state specific heat of the CuO-based superconduc-
tors [14], and in the size of the "Fermi surface" in the
t-1 model as calculated using high-temperature expan-
sions [15] and variationally [16]. (In these calculations,
the nominal Fermi surface is identified from a strong fea-
ture in the density-density correlation function. ) These
anomalies are at least roughly consistent with the 2-on
hypothesis: the specific heat is substantially larger, and
the volume of the Fermi surface is roughly twice as large,
as would be expected for ordinary fermions.
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