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Coulombic Criticality in General Dimensions
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Debye-Hiickel theory for spheres of diameter a with charges ~q is extended to general dimension d.
Explicit results include Bjerrum association of +/ —ions and the dipole-ionic solvation energy. For all

d & 2 a critical point terminates conducting-liquid —conducting-vapor coexistence: The critical density

p,
" = p, a" falls with d Q 2, but T,

* —= kBT,a" 2/q' rises Wh.en d = 2, an insulating vapor appears for
T ~ —, (the Kosterlitz-Thouless point), separated from conducting fluid by an infinite-order critical line

ending at a tricritical point: p,
* = p,"(d 2) = 0.004, T,

* = T,*(d 2) ~ —, for p' ) p,
' the transition

is first order.

PACS numbers: 64.70.—p, 05.70.Fh, 64.60.—i

Despite the pioneering work of Debye and Hiickel
(DH) [1] and Kosterlitz and Thouless (KT) [2] and many
subsequent studies [3—6], a full elucidation of the phase
transitions and critical behavior of a fluid, say of hard

spheres, with pure Coulombic interactions remains both
a theoretical [3—5] and a computational [6] challenge to
statistical physics. In d = 3 dimensions renewed interest
comes from recent experiments [7] suggesting that fluid-

fluid criticality that is driven principally by Coulombic
forces is of mean-field or van der Waals rather than of
Ising character, or, at least, that the ultimate crossover to
asymptotic Ising criticality occurs uncommonly close to
the critical point and is unusually sharp [8]. In d = 2
dimensions, the fate of the KT insulator- or dielectric-
to-conductor transition at higher ionic densities is of
ongoing interest both for its own sake [5,6(a),6(b)] and

for gaining insight into related magnetic, electronic, and

superfluid systems [9]. Furthermore, the significance of
the KT dipolar screening mechanism for d 4 2 is also
little explored.

At this point in the development of a full theory
we believe there is a valuable role to be played by
relatively simple approximate theories (as provided by
mean-field analyses of magnetic transitions) that give the

general structure of a phase diagram and, in particular, re-
veal and assess the dominant physical mechanisms. The
latter should, in due course, be incorporated into more
sophisticated but probably less transparent theories. In
this spirit, the original DH theory [1] for the so-called
restricted primitive model (RPM), namely, hard spheri-
cal (d = 3) ions of diameter a in a medium of dielec-
tric constant 0, one-half carrying charges +q the other
—q, has recently been extended [10]. Bjerrum's con-
cept (Bj) [3(a)] of the association of + and — ions
into neutral dipolar pairs [11], which serves to correct
the DH linearization of the Poisson-Boltzmann equation,
was augmented by a calculation of the solvation free en-

ergy of a dipole in the screening ionic fluid (DI). The
resulting DHBjDI theory [10] predicted a critical point
at surprisingly low density and temperature: specifically,

with further allowance for hard-core (HC) volume ex-
clusion [10], at p„* = 0.026 and T,

* = 0.055. (Here and
below we take p* = pa", where p = N/V is the den-

sity of the total number of ions, associated or not, and
T* = kttTDad 2/q2. ) These critical point predictions turn

out to be remarkably close to recent Monte Carlo es-
timates [6(a),6(e),10] (although the simulations are still

subject to various reservations and, in particular, say noth-

ing about the critical exponents).
Apart from the intrinsic interest of studying Coulombic

fluids for general d, a strong motivation is provided by
the search for a suitable small parameter for the critical
region, like e in the d = 4 —e renormalization group
expansions for standard Ising systems and 1/N in the
case of polymer solutions, see [4]. In fact, for Coulombic
fluids it transpires that d = 2 is a marginal dimension.
Furthermore, as we report here, T,

*(d) rises whe. n d falls,
which suggests that the fluctuations are, in some way,
playing a reduced role in low d (the reverse of the usual

situation) so that mean-field-like theories may work best
in d = 2 + e dimensions with e small. Likewise, within

pure DH theory we find that p,'(d) decreases to zero as
d 2+. At this stage, however, we have been unable to
exploit these discoveries in a systematic way that treats all

fluctuation effects.
To present our results for general d = 2 + e, we take

Coulomb's law to be F;,(r) = q;q, /Drd ' and write the

pair interaction potential as [12]

When d ~ 2, this yields tP,, (r) = (q;qI/D) ln(r/a), —the

expected logarithmic potential [2,5].
Now for d = 2 consider a neutral fluid of pointlike ions.

(See, e.g. , [11(b)], and references therein. ) Via scaling,
the logarithmic potential leads to the exact equation of
state

p/pkBT = 1
—Tp/T witll T()
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valid [13] for T* ) z, while Tp is recognized as the KT
temperature [2,5]. This result seems plausible asymp-
totically in the limit p* = pa" ~ 0 even for hard-core
ions. But: "Is it a prediction of the DH theories [10] for
d = 2?" The answer is "definitely yes!"

More generally, we follow [10] and compute the pres-
sure p(T, p, +, p, , p, z) as a function of the chemical poten-
tials p,„for free + and —ions and bound dipolar pairs,
by maximizing f(T; p+, p, pz) + g, tu, ,p, over the cor-
responding densities p+, p, and p2. The Helmholtz free-
energy density, f =—F/V, is constructed approximately
as a sum of terms starting with

f' "' = ksT g p, [1 — 1n(p, A", /g, )],

where A+ = A = A(T) is the thermal de Broglie wave-

length and Az = A, while f+ = g = 1 and gz(T) rep-
resent the internal ionic and dipolar partition functions.
Then a term f"c is added to represent the hard-core re-
pulsions: a free-volume form [10] is sufficiently accurate
at the low densities of most interest.

The DH excess ionic free energy fD" is calculated
straightforwardly in the usual way [1,4, 14,15] based on
Poisson's equation written now for general d as [14]

V P = Cdpq(r—)/D, Cd = 2qr /I zd . (4)

The standard arguments [1,4, 15] yield the Debye screen-
ing length go = I/~(T, pI) via

Ic = Cdq pI/Dk&T with pI = p+ + p . (5)

Next, solution of the appropriate cylindrically symmetric
general d Helmholtz DH equations [4,10,14,16] using
modified Bessel functions, K„(x) yields the electrostatic
energy (within DH theory) of a typical ion or dipole [16].
Finally, the Debye charging process gives the purely ionic
DH free energy [12] via

Cda"pf " = in[Cd(x/2qr) Kdtz(x)], (6)

To allow for ion-pair formation we need the asso-
ciation constant K(T) —= $2(T)//g+g, see (3). Follow-
ing, as before [10], Ebeling's careful analysis [3(c),17]
for K(T) when d = 3, we adopt Bjerrum's original pro-
posal [3(a),10] which should be fully adequate at low T"
((I/d): We thence derive [14]

Cga~T* E'T
K(T, d) = 1+,+ ", (9)

1 —1T* (1 —dT')2

the ellipsis being of order (eT*)2 and (T*)It'r: In fact,
the truncated expansion proves adequate in the critical
region, to within 3%, even for d = 3 [14]. Equilibrium
between ions and dipoles at an overall density p = pI +
2p2 is ensured by p, + + p, = p, 2, which leads to

pz = 4pIK(T) exp(2pp, I" —ptu, z"), (10)

where the excess chemical potentials are p, ';"(pI, pz) =
gfex/pp (i I 2) While fex fDH + fDI + fHC

In summary, all thermodynamic properties follow di-
rectly from (3), (5)—(10). Figure 1 shows results for pure
DH theory [supplemented, in (a), by hard-core terms].
As d 2+, the coexistence curve approaches a sharply
cusped form in which the d = 2 vapor phase resides only
at zero density and pressure, while the coexisting liquid
density is described by

t'(1 —t')

qr lnz ((t /0t') ln [(tp/t') ln (t /0t')]j

where t' = (T, —T)/T, and tp =
2 exp(z —2yE) =

0.26. The critical temperature varies with d as

T,
" =

4 ge llnzl + 21nllnzl —2ye +, (12)

when e 0, while the critical density vanishes as
-2

p,
* = e/4qr ln ——21nllnzl + 2yE + 1 + . , (13)

where P = 1/k&T and x = aa: ford = 3, this reproduces
the well-known result [1,4, 10,15]. Likewise [10,14,16]
with

( ) '+"/'2
1

tuz(x) = —» Cd+21 I KI+diz(x) +
x4 (2m) 2x

[1 —x'[1 + O(e)])/4de + O(x ),
the dipole-ion (DI) contribution is found to be

/3f ' = pz(a a +'/azT')~2(ixaz) —pzpI/T,

I
4

0.2
g 8 = 2

0.1—

DHHC

= 2.4

10

where [10,12,16] az —= (I + sz)a is the radius of the
effective spherical cavity enclosing a dipolar pair and
excluding the centers of other ions. As explained pre-
viously [10], we may estimate az via an angular aver-
age which yields s2 = 0.2525 —0.1233m + 0.0328' for
0 ( e ~ 1 [14]. However, our principal results are not
sensitive to s2.

I I I I

0.02 „0.04 2P

FIG. l. (a) Coexistence curves in general d for Debye-Huckel
theory (with hard-core terms); (b) critical temperature and
density (right- and left-hand scales) vs d for pure DH theory.
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see Fig. 1(b). For d = 2 one sees from the appropriate
Landau-type expansion that the critical point is actually
tricritical in nature (as in W ~ polymer solution theory,
see [4]); this is consistent also with the criticality of the
line p = 0 (implying ~ —= 0), for T,* ) 4. When d ( 2
pure DH theories predict T,* = ~ and zero-density vapor
for all T. Of course, these results are surely incorrect for
the RPM; to correct them ion pairing must be allowed for.

As in d = 3 dimensions [10], inclusion of Bjerrum
pairing (both with and without dipole-ionic interactions)
always leads to much larger and, in fact, more reliable
values for p,'(d), see Fig. 2. Furthermore, p,*(d) no longer
vanishes when d 2. Rather, (i) for pure DHBj theory
one finds

0.25

0.23

0.22—
0 0.002 0.004 0.006 0.008

P
0.010

gD = ~ae' '+~'+', c =
4 )In(p/p„;)), (15)

for p ( p„;, when t = [T —T (p)]/T 0+, while
the singular part of the free energy vanishes as

Pf, = In(go/a)/—2n go, which, except for the logarith-
mic factor yielding a coefficient 1/t, is in -accord with

hyperscaling.
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FIG. 2. Coexistence curves for DH theory with Bjerrum
pairing plus dipole-ionic interactions (and hard-core terms).

p,
*

p,'„= e ~'/8m = 0.003954 as d 2, (14)

while (12) remains valid for T, (d); similarly (ii) DHBjDI
theory yields p,*,

;
= 0.003854 but now T,*(d) T,*,; =

0.246936 (see Fig. 2).
More remarkably, when d = 2, a completely new low-

density vapor phase appears for T* ( 4 as shown in

Fig. 3. In this phase p&, the density of free ions, vanishes
identically leaving only bound dipolar pairs: This phase
must thus be an insulator as first identified in KT
theory [12]. Furthermore, p~ = 0 implies p/kqT = pq =
zp and go = ~. At all low densities, up to p„;, the
insulating, unscreened dipolar vapor is separated from the
conducting, screened ionic fluid, with p& ) 0 by a line

T„(p) of infinite-order critical points which terminates at a
tricritical point, see Fig. 3. Indeed, the Debye correlation
length diverges as

FIG. 3. Phase diagram for d = 2, according to DHBjDIHC
theory (Fig. 2), showing an infinite-order conductor-insulator
transition ending at a tricritical point.

In both DHBj and DHBjDI d = 2 theories, the coex-
istence curve between insulating vapor and conducting
liquid satisfies Ap(T) =—p~;q

—p„,~
—t/ln [t[ and so ter-

minates in a cusp at T„;, see Fig. 3. Indeed, for DHBj
theory b, p = p»;q(T) is given by (11). Furthermore, both
sides of the coexistence curve meet the critical line T (p)
tangentially at the tricritical point; however, since the de-
gree of tangency is only logarithmic, this is hardly visible
in Fig. 3. To be more explicit, note that in DHBj theory
T (p) is (artificially) constant: then the divergence of

~p ap ~pliq to p tp I= —2p,*„ln —ln
Bt

when t 0—ensures the tangency.
The mathematical origin of the surprising appearance

of an insulating phase in DHBj theories lies in the law-of-
mass-action expression (10), and the fact that when d = 2
one has Pp, ;" = —(Inp&)/4T* and Ppz" —p (~lnp&) /T"

as p& 0: see (6)—(8) when e 0. This leads to pq-
p, . [Compare with [5(b),11(b)].] For T* ) 4, this
clearly allows both pq and p& ) 0 to vanish continuously
when p = p& + 2pp 0, but no such possibility exists
when T* ( -„. Thus one is forced to a phase with

p~ —= 0 and p = 2pq. This conclusion follows also in

an analytically smooth way by examining the limit d
2+ with T* ~ 4. %e remark that, unfortunately, this
complex behavior when e 0 does not seem promising
for a systematic renormalization group expansion in

powers of e.
In as far as the DHBj theories yield a low-T insulating

phase when d = 2, they agree with the original Kosterlitz-
Thouless theory [2], although this describes only the insu-

lating phase. However, when KT theory is supplemented

by RG considerations [5,18] or a full RG theory is used

[19],the factor e'~' in (15) is replaced by exp(c/t") with
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t =
2 [20]. To achieve this it is clearly necessary to

account for the dipole-dipole interactions which have so
far been completely neglected: work to that end is under

way. On the other hand, the KT and RG theories are valid

only for low densities and give essentially no hint of the
switch to a first-order transition which we find already at
the strikingly low density p,*„=—p„;a = 4 & 10 3. Such
an abrupt change in the nature of the insulator-conductor
transition has long been suspected [5(c),5(d),6(a),6(b),9]
but, to our knowledge, no such explicit estimate of the
threshold density has been exhibited. It must be men-

tioned, however, that on the basis of a somewhat ad hoc
hybrid treatment of the KT recursion relations [5(c),5(d)]
it has been suggested that the KT line terminates at a crit-
ical endpoint, associated, at a higher temperature, with

a new type of d = 2 critical point. While this scenario
might well be realized in some systems exhibiting KT-

type transitions, we withhold further comment as regards
Coulombic Auids until the dipole-dipole interactions have
been incorporated into our DHBj-based theories.

In summary, we have presented compact closed expres-
sions for the free energy of the basic hard-sphere ionic
fluid in general dimensions within Debye-Hiickel theory,
extended by Bjerrum +/ —ion pairing and dipole-ionic
interactions. The predicted low-density behavior appears
correct for all d (~2). When d falls T,'(d) rises, suggest-
ing that fluctuations may be of less importance in low d.
Bjerrum pairing plays a crucial role when d 2 since, in

its absence, condensation into an unrealistic zero density, -

low-T vapor occurs below the KT point T,* = 4. How-
ever, inclusion of pairing leads instead to an insulating,
unscreened dipolar phase with no free ions. The low-

density transition from conducting to insulating fiuid is
critical but becomes first order at very low density via a
tricritical point. On the critical line one has ln($/a)—
(T —T,) " as in RG-KT analysis; however, the current

DHBjDI theory yields v = 1 rather than 2. This indi-
cates a need for the inclusion of dipole-dipole interactions
which, however, seems feasible within the same explicit
and straightforward framework that, despite its approxi-
mate status, seems remarkably sound physically.
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