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The model presented overcomes past inconsistencies by applying asymptotic techniques. The
obtained growth rate, y = u(k)~kg —2ku, (where v. = ablation velocity, a(k) —= v'1 —(k/k, .)"
represents the stabilization heat conduction effect, and the cutoff wave number k,. is much smaller
than the inverse of the density scale length at the ablation front), reproduces numerical simulations and

experiments in a more complete way than the so-called Takabe formula, y = 0.9~kg —3kv„.

PACS numbers: 52.35.Py, 52.40.Nk

The Rayleigh-Taylor instability (RTI) in inertial con-
finement fusion (ICF) [1] is critical for the achievement
of appropriate implosions. In 1974, Bodner [2] reported
a simple discontinuity model of such instability, however,
he needed to introduce an ad hoc assumption to close the
problem. He found that growth rate y could be reduced
below the classical value (~kg), due to mass ablation and
described as y = vtkg —kv„where k is the transverse
wave number, v, is the flow velocity across the ablation
front, and g is the target acceleration. However, the nu-

merical simulations [3] and experimental results [4] which
followed suggested larger stabilization effects.

Numerous attempts have been made to develop an

analytical model by means of a surface discontinuity
(ablation surface) separating two uniform fluids [5]. Since
this approach leaves the solution undetermined, other
approximations circumvent these difficulties either by
including in the analysis a layer with a diffuse boundary
centered at the ablation front (of thickness the density
gradient scale length) and solving numerically a linearized

eigenvalue problem [6,7] or by using a WKB model [8]
(assuming very small wavelength perturbations).

Although the general belief is that the reduction is due

to mass ablation, the single theoretical support for such a
large stabilization is the so-called Takabe formula [6]:

y = 0.9~kg —3kv, , (I)
which was obtained by means of a numerical Ptting, and

it is repeatedly referenced in the literature. Laser fusion
simulations seem to agree well with this formula, how-

ever, a recent set of indirect-drive experiments conducted
on the Nova laser [9] do not suggest a large stabilization
ablative effect [factor 3 in Eq. (1)].

It is well known that flow expanding through an

interface may require additional information besides the
conservation relations across it [10]. Obtaining these
additional conditions has been the most speculative part of
the models about RTI in ICF and a recurrent inconsistency
for the last twenty years, all this becomes worse by the
extra difficulty of approximating the near plasma corona
region, dominated by the inhomogeneity of the fluid, in

a realistic way. The model presented here overcomes

this obstacle by considering, on the one hand, the inner
structure of a thin transition layer (ablation surface), as in

studying the stability of slow-combustion fronts [11]and,
on the other hand, by performing, in a rigorous way, an

asymptotic matching (no jump conditions) to both sides of
it [12]. The soundness of the physical model is based on
both the assumption of a sharp ablation front and on the
smallness of the Mach number of the flow through it.

For simplicity, I am considering a planar foil of
thickness d (small compared with the radius of the shell if
spherical), which is moving with acceleration g, due to the
ablation pressure p„generated by the heat flux coming
from the corona. This slab is continuously ablating with

a mass ablation rate m.
We use the same one-fiuid equations as Bodner [2] (in

the frame moving with the unperturbed ablation front),
but we do not assume incompressibility and, moreover,
the heat conduction is explicitly taken into account

ap/at + V . (pv) = 0, (2)

a(pv)jat + V (pvv) = V(pT) + pg—, (3)

a/at(pv'/2+ 3pT/2) + V.

[p v (5T/2 + v /2) —KV T] = p v . g . (4)

We also assume the fluid to be a monatomic perfect gas;
the temperature is conveniently normalized, g = ge„, and

K is the thermal conductivity. Eq. (4) does not contain

an energy deposition term, for instance by means of laser

energy, because the absorption region is located at a large
distance from the ablation surface, compared with the

wavelength perturbations I am considering.
One can distinguish three asymptotic regions to be

matched: (i) a cold and adiabatically compressed zone

(region 1) of thickness d, which presents a maximum of
the density p„, where its values for the pressure and tem-

perature are p, and T„respectively; (ii) an adjacent thin

layer (region 2), where the material is being heated and

expands towards the corona. The pressure is approxi-
mately constant, pT = p„but not the density, which is
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of the order of magnitude of p, . The characteristic thick-
ness of region 2 is 5 —= K, /m (-the gradient scale length
at the ablation front) [7], with K, the thermal conduc-
tivity at T and p, . The characteristic Mach number of
the flow velocity, M, =—v, / Jp, /p„ is assumed to be a
small parameter, with v, =—m/p, defining the ablation
velocity. (iii) Finally, the hot plasma corona (region 3),
where the flow reaches sonic conditions, and the order of
magnitude of the characteristic density p, =—p,l„tem-
perature velocity T, —= v2 —= (p, /m)2, and thickness L are
obtained in a simple way through mass, momentum, and
energy balance, mT, —KT, /L (the thermal conductivity
is assumed K = KT" /p, 1 & m & 2, and S & n & g

[13], in order to roughly describe other possible transport
energy mechanisms, such as radiation; in laser fusion and

for electronic heat conduction, m —= 0 and n = 2):

L =—(p, /m) "2K/(Snmp, ), (5)

thus, one obtains L = 2b, /(SnM2") » 5, and 5 « d «
L typically.

Attention is restricted to instability wave numbers
k & 1/d such that the equilibrium does not change
on the time scale of the growth rate. As it will be
proved, stabilization is found (in the limit M, 0)
for wave numbers kd —(kL)'i" Typic. al targets could
have ratio d/L values such that kv2/g —kdM2 « 1

(main assumption of the model), and therefore kh « 1

(simulations of Gardner et al. [3] have kdM2 —0.04).
Let p, i be the perturbed ablation pressure due to the
deformation x, of the rippled ablation front; using mass,
momentum, and energy conservation one can obtain the
characteristic velocity v+ and temperature T+ at distance
k from the ablation surface inside region 3, v~-
mT~/p, —mT, /[p, (kL)'t"], so the perturbed ablation
pressure gives us p, l

—p, kx, /(kL)'t" Then, the h. eat
conduction causes the pressure to increase on the crest
of the rippled ablation front and decreases on the valley,
damping the growth. Now, using a mechanical balance
and p, —p, g, one can obtain, apart from numerical
factors, 82x, /8t2 —kg[1 —kd/(kL)'l" ]x,. Certainly, the
convection of the material through the interface also
damps the growth and, in some cases, both effects could
be numerically comparable.

I look for solutions of perturbed quantities of the
form exp(yt + iky) Let x =. 0, the unperturbed posi-
tion of the ablation front, and x, = /exp(yt + iky),
the perturbation (in the limit kb, 0, region 2,
compared with regions 1 and 3, becomes a surface
discontinuity). It is convenient to strain the x co-
ordinate [12], defining a new variable in the form
s = x —x, and to expand velocity v = vl~(s) exp(yt +
iky)e~ + {vo(s) + [vl„(s) + yg]exp(yt + iky))e„, den-
sity p = po(s) + pl(s) exp(yt + iky), and similarly for
the temperature T (notice that vl„ is the velocity with
respect to the moving perturbed ablation surface which
is located at s = 0). We would then proceed with the

with Ci and C2 being the perturbed mass flow rate and
momentum flux in the x direction at s = 0, respectively
(the differences with respect to Bodner [2] in the g terms
are due to the different definition of v], and the strain of
the x coordinate).

In region 2, the zero-order solution matching to re-
gion 1 yields ppTp = p„ppvp = m and

Sm(TD —T,)/2 = K(TO/p )(dTO/ds), (7)

where terms of the order of M2 and 5/d (gravity ef-
fects) have been neglected (notice that To s i for s/5
is large). Perturbed quantities can be obtained in a simple
way through mass, momentum, and energy conservation.
Since kh « 1(yb, /v, « 1), it is straightforward to ob-
tain the solution matching (at s/b —~ but iksi && 1) to
region 1:

p&vp + ppv&x = Ci,

p& Tp + ppT] + 2ppvpvlx + pl vp = C2 ~

2

ivlY = kg(vo —v, —y/k) —Ci/p, , (10)

Tl = (To —T,) [C3 + SCis/(mh)](T, /To)", (11)
with C3 being an arbitrary constant.

To analyze region 3 (s ) 0), only a layer of thick-
ness s —k ' &( L needs to be considered; let then

g —= ks be the normalized space variable in this re-
gion. The asymptotic analysis is complex and requires
a power expansion with respect to two assumed small
parameters: lS =—(kL) 'l" (characteristic Mach num-
ber squared in such a layer v+/T+) and e —= M, (kL)'i2"
(- y/kv+ —Qkv2/g). The dominant term of the unper-
turbed solution matching the solution of the region 2 at
s/6 +~ is p, /pp = vp/v, = To/T, = Bg' " +
We then expand the perturbations as follows:
plTp + poTl = Bp, (pi + ep2 + Bp3 + '') vi Bv
(ill + eu2 + B u+3. . ), VlY = Bv~(vl + ev2 + bv3 +
. . ), and Ti = BT,(8i + e82 + 883 + . ), where
w, —= {p,, ui, v, , 8, , d8, /dg) are functions of 7l. Then,
Eqs. (2)—(4) lead to a fifth order system of linear dif-
ferential equations with variable coefficients for the

analysis of Eqs. (2)—(4) in zero order and linearize in the
first-order perturbations.

In region 1 (s & 0), after a transient time, since the
flow velocity is very subsonic (M, « 1), we have p, =
I d po(s')gds' =—p, „gd, with p,„ the slab average den-

sity. Then, expanding for is/di « I, one obtains ppTo =
p, [1 + p, s/(p, „d)], po/p, = 1 + O(s/d), and vo/v, =
1 + O(s/d). As shown by Bodner [see Eqs. (10)—(12)
of Ref. [2]], the perturbed quantities satisfy the relations

pi/po = 2Ti/(3TO) = 0, VERY
= i(Cl/p + yg), and

C2 = gp, g —yam(1 + y/kv, ) + Clv, (1 —y/kv, ),
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perturbations in each order [O(1), O(6), and O(a)] of the
type dw, /dg = aow, + c,wl + b, kg, ao and b, , c, are
matrix and vector coefficients (with cl =—0), respectively,
which depend on g.

In order to connect regions 2—3 we match at the
different orders the solutions of Eqs. (8)—(11), taking
the limit s/b, ~ +~ (with ks && 1), to p, , 8i, u, , v, at
71 ~ 0+. Then Eqs. (10) and (11) lead to

iv~~/v, ~,l~ ~ = Bkgil'l" —ygM, /kv, +, (12)

Ti/T, (,lg ~ = BCirl' "/nm + . (13)
Equations (12) and (13), together with momentum and
mass conservation, Eqs. (8) and (9), is all we need to con-
nect regions 2—3. The solution w —= wi + aw2 + Bw3 +

will linearly depend on the constants C&, C2 and g.
Moreover, it has two unbounded modes as iI +~ [7],
so the condition that solution must be bounded will deter-
mine Ci and C2. Both modes explode as exp(iI) [for in-

stance 81 —ill —+5)l(4" exp(iI) [1 + O(1/7I) + ]] [14],
this making the numerical determination of C~ and C2
troublesome (this last point has been always unsatis-
factorily treated in the past [6,7]). Now expanding
C2/8p, kg =—q and Cimkg —= f one obtains

q = qi + q2 M, (kL)' " + q3(kL) ' " + . , (14)
kv,

and similarly for f. The constants f, , q, are determined at
each order imposing the vanishing of perturbed solution as

+~. Some numerical values are shown in Table I.
Then, using Eq. (6) we obtain the dispersion relation

y + kv, (1 + f)y —(kv, ) f
—k i —('" ')" =0. (is)kg I,i q

I claim that, since f and q are positive, the mass fiow
across the ablation front alone could never completely
suppress the instability, but it is the last term in Eq. (15)
that produces it. Then, retaining up to the first order in li

and a, the unstable root is

( "/p. )kd q3

(kL)il. ' (kL)il )
—kv, (1 + f~ + q2)/2, (16)

%e point out that the factor multiplying kv, above,
(1 + fi + q2)/2, takes a value of approximately 2 for
all the range of interest in n and m values (becoming a
general feature of the ablatively accelerated targets), with

q2, the pressure contribution, being the largest. Strictly,
in the asymptotic limit M„O, the growth is stabilized
because y, the square root term in Eq. (16), vanishes
for a cutoff wave number k, = [p, L'l" /(qip, „d)j"I'"
with k,. ' much larger than the thickness 5 of the abla-
tion front. For larger wave numbers the modes become
oscillatory, similar to the effect produced by surface ten-
sion in liquids. The stabilizing effect of second and first
terms of Eq. (16) would increase substantially by means
of reduced values of the peak density p, (for m fixed)
and L, respectively. Eq. (16) has been rigorously de-
rived without any assumption regarding the behavior of
the far away plasma corona or iaser energy deposition re-
gion, which affects the determination of L. On the other
hand, L is obtained using p, and m values which can
be derived from either one-dimensional numerical simu-
lations, experiments or analytical models. For instance,
some known scaling laws for planar analytical models in

2/3 -2/3 1/3 -2/3
laser fusion (p, —IL Ai, m —I~ Ai ) [15] lead to

4/3 &4/3
L —IL AL, being IL = laser intensity and AL, = laser
wavelength. On the other hand, spherical analytical mod-
els [6,7], if energy is absorbed in the supersonic region of
the corona, lead to L/d, depending basically on the ratio
of the sonic to the ablation density and the aspect ratio.

In Fig. 1 the numerical results calculated by Takabe
[6] in the laser fusion case (solid squares), using the
same normalization, for several ratios of the ablation to
the sonic densities p, /p„are compared with the results
from Eq. (16) (k = I/r„where l is the Legendre index of
spherical harmonics, r, is the ablation radius, G = gr, /C2,
C,. is the isothermal sound velocity at the sonic radius r„
and Y =—yC, /r, ).

Figure 2 next shows the comparison with some results
of the numerical simulations reported by Gardner et al.
[3]. L has been obtained from some of the data reported
there; plastic CH targets of thickness 100 p,m exposed
to blue (0.26 p, m) or red (1.06 p, m) laser radiation (3 x
10'4 Wcm 2). One of them, the corresponding to criticai
dump (all the laser energy was deposited at critical density

100.

50.

10.

0.5

TABLE I. Coefficients f, and q, for several values of n and
m.

0.1
10. 100. 1000. 10000.

n/I

2.5/0
5/1
7/1.5

1.03
1.01
1.00

—0.52
—0.26
—0.19

—0.01
0.23
0.44

ql

0.67
0.80
0.85

2.08
2.03
2.02

0.61
1.29
1.76

FIG. 1. Normalized growth rate versus Legendre index for
several values of p. /p, . Curves were obtained from Eq. (16)
in the text and solid squares are points calcolated by Takabe
[6]. The straight line corresponds to the classical growth /kg
in normalized unit.
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in the simulation) which has a value for L much smaller
than the others, shows a departure from the rest, in

agreement with what is predicted by Eq. (16). Such a
behavior cannot be only attributed to the mass ablation
term of Eq. (1).

Finally, for the actual conditions of a set of indirect-
drive experiments [5 —1 —4 p, m = minimum density
gradient scale length=—LMz" (n + 1)"+'/n", kv2/g (
0.02] [9], Eq. (16) leads to y = ~kg —2kv„which
shows a good agreement with the data of the experiment
and the corresponding LAsNEx simulation.
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